Oh Mother! Overview of Obstetric Emergencies Managed in the Intensive Care Unit

A presentation for HealthTrust Members May 15 2025

Kelsey-Anne Forrest, PharmD PGY2 Critical Care Pharmacy Resident

Preceptor: Hana L. Davis, PharmD, ASHP Critical Care Pharmacist HCA TriStar Centennial Medical Center

Disclosures

- Neither the speaker nor her preceptor for this educational activity have relevant financial relationships to disclose with ineligible companies.
- Note: This program may contain the mention of suppliers, brand products, services or drugs presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes only and should not be perceived as an endorsement of any particular supplier, brand, product, service or drugs.
- The content presented is for informational purposes only & is based upon the presenter(s) knowledge & opinion. It should not be relied upon without independent consultation with & verification by appropriate professional advisors. Individuals & organizations shall have sole responsibility for any actions taken in connection with the content herein. HealthTrust, the program presenter(s) & their employers expressly disclaim any & all warranties as to the content as well as any liability resulting from actions or omissions of any individual or organization in reliance upon the content.
- This research was supported (in whole or in part) by HCA Healthcare and/or an HCA Healthcare affiliated entity. The views expressed in this publication represent those of the author(s) and do not necessarily represent the official views of HCA Healthcare or any of its affiliated entities.

Objectives

- Recall incidence, risk factors and pathophysiology of obstetric emergencies that can complicate pregnancy, childbirth and the post-partum period.
- Identify therapeutic strategies to manage common obstetric emergencies.
- Recognize pharmacologic considerations for pregnant and post-partum patients requiring advanced cardiac life support (ACLS).

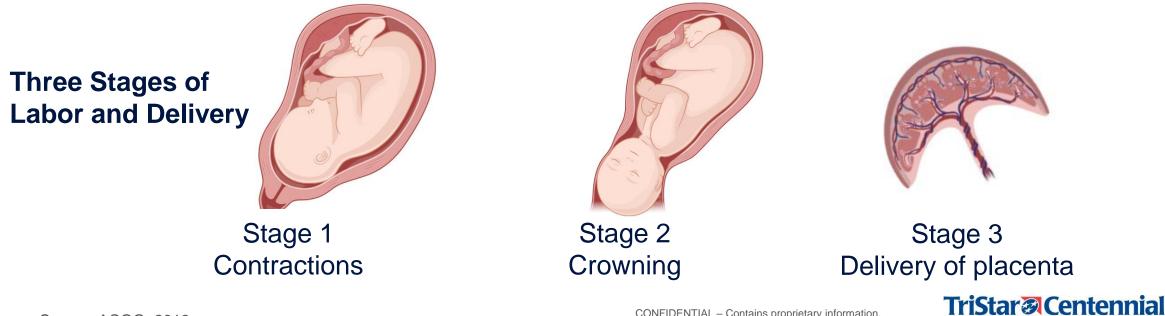
Abbreviations

- AFE: Amniotic Fluid Embolism
- CPR: Cardiopulmonary resuscitation
- CS: Cesarean section
- CXR: Chest X-ray
- DBP: Diastolic blood pressure
- EBL: Estimated blood loss
- ECHO: Echocardiogram
- ECMO: Extracorporeal membrane oxygenation
- FDA: Federal Drug Association
- LFTs: Liver function tests
- OBER: Obstetric emergency room

- OR: Operating room
- PE: Pulmonary embolism
- PRBCs: Packed red blood cells
- PPH: Post-partum hemorrhage
- pVT: Persistent ventricular tachycardia
- RV: right ventricle
- SBP: Systolic blood pressure
- SCr: Serum creatine
- VA ECMO: Veno-arterial ECMO
- VF: Ventricular fibrillation
- VV: Veno-venous

Overview of Obstetrics

Obstetric Emergencies


- Rare, yet severe complication of pregnancy and postpartum
 - <1% of all Intensive Care Unit (ICU) admissions</p>
 - <1% of all pregnancies</p>
 - Maternal mortality is 17.3 deaths per 100,000 live births
- Must consider the physiologic and pharmacologic adaptations in pregnancy that differ from the general population
- Clinical pharmacists play a vital role in designing and managing a pharmacologic plan
- Potential obstetric emergencies seen in the ICU

Acute fatty liver of pregnancy	Amniotic fluid embolism	HELLP Syndrome
Ovarian hyperstimulation syndrome	Peripartum cardiomyopathy	Preeclampsia
Post-partum hemorrhage	Tocolytic-induced pulmonary edema	Eclampsia

Peripartum & Postpartum Terminology

- Gestational age: length of the pregnancy in weeks
- First trimester: conception week 13
- Second trimester: week 13 28
- Third trimester: week 28 40
- Postpartum: delivery 6 weeks

CONFIDENTIAL – Contains proprietary information. Not intended for external distribution.

MEDICAL CENTER

Physiologic Considerations During Pregnancy

Pulmonary

- † tidal volume
- ↑ minute ventilation
- ↑ oxygen consumption
- ↓ residual capacity
- Respiratory alkalosis

Renal

- ↑ blood flow
- ↑ renal transporters

Hematologic

- ↑ blood volume by 50%
- ↑ plasma volume

Source: Baltaji et al., 2023; Kelsey et al.,

Not intended for external distribution.

Cardiovascular

- ↑ cardiac output
- ↓ blood pressure
- ↓ systemic volume resistance

Gastrointestinal

- ↓ gastric motility
- ↑ gastric pH

Uteroplacental

- ↑ uterine hypertrophy
- ↑ ↑ progesterone
- ↑ estrogen
 - TriStar Centennial

Pharmacotherapy Considerations in Pregnancy

Pharmacokinetic properties are altered by several mechanisms in pregnancy

Property	Overall Effect	Mechanism	Effect on Concentration
Absorption	\downarrow	 Prolonged gastric motility by progesterone Increased gastric pH 	↓ (oral drugs (PO))
Distribution	ſ	 Increase in blood volume causes dilution of proteins, thereby decreasing protein-bound drugs Increase in body fat stores Decrease in albumin/ a1-acid glycoprotein 	 ↓ hydrophilic drugs ↑ lipophilic drugs ↑ for protein bound drugs
Metabolism	\downarrow	Changes in select CYP450 enzymes (CYP1A2 and CYP2C19)	Variable
↑ Increase		Increased hepatic flow	\downarrow
Elimination	1	Increased renal blood flow and increased renal transporters involved in secretion	\downarrow
	2000	CONFIDENTIAL – Contains proprietary information.	TriStar Centennia

Pharmacotherapy Considerations in Pregnancy

Fetal risk considerations

- Drugs enter placenta from maternal circulation via diffusion and influx transporters
 - Drug characteristics that increase movement into placenta
 - Non-ionized
 - Nonprotein-bound
 - Low molecular weight
 - High lipophilicity
- Teratogenic drugs unlikely to cause malformations after 12
 weeks as embryogenesis mostly complete
- Drugs causing fetal toxicity may occur in late pregnancy

Teratogenic di	rugs
Warfarin	
Phenytoin	
Corticosteroids	
Drugs causing	fetal toxicity
ACE-Inhibitors	

Patient Case #1

Patient Case #1

H&P

31 year-old who is 35 weeks of gestation presents to OBER with severe headache, blurry vision and mild upper abdominal pain. Patient given magnesium sulfate and IV labetalol and admitted for delivery.

Labs & Vitals Upon Admission

BP	160/102 mmHg
Platelets	130 x 10 ⁹ /L
AST	85 U/L
SCr	1.1 mg/dL
Protein:SCr	0.3
CXR	Pulmonary edema

Patient Case

Infant urgently delivered via CS delivery for preeclampsia with severe features

Patient intubated for ongoing seizure activity; magnesium sulfate, midazolam and IV hydralazine administered Patient stabilized in the ICU, labs normalized and patient discharged home 9 days later

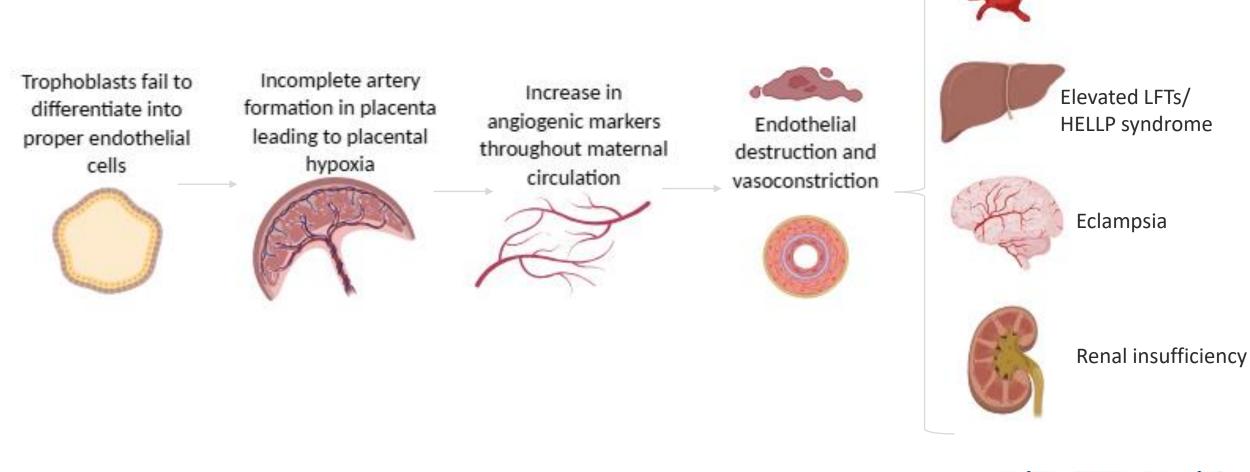
At skin closure, patient complained of severe headache and upper quadrant pain then began exhibiting tonic-clonic seizure activity concerning for **eclampsia**. BP was 201/175 mmHg Labs remarkable for HELLP syndrome; Platelets 58 x 10⁹/L; AST 620; ALT 590; LDH 950; INR 1.6.

Platelets and fresh frozen plasma administered

Preeclampsia

Preeclampsia

Epidemiology


- Occurs in 6% 8% of pregnancies
- Maternal mortality due to hypertensive disorders occurs in up to 16%

Definitions

Gestational Hypertension	Preeclampsia	Severe Features
 SBP ≥ 140 or DBP ≥ 90 mmHg on 2 occasions at least 4 hours apart SBP ≥ 160 or DBP ≥ 110 mmHg 	Gestational hypertension + proteinuria* or severe features *≥300 mg/d urine collection or protein:SCr ratio ≥ 0.3	 SBP ≥ 160 or DBP ≥ 110 mmHg on 2 occasions at least 4 hours apart Platelets < 100 x 10⁹/L Elevated LFTs x 2 upper limit normal New onset headache
After 20	weeks of gestation	 New onset headache SCr ≥ 1.1 mg/dL Pulmonary edema
	CONFIDENTIAL – Contains pr	TriStar@Centennial

MEDICAL CENTER

Preeclampsia Pathophysiology

Thrombocytopenia

Preeclampsia Management

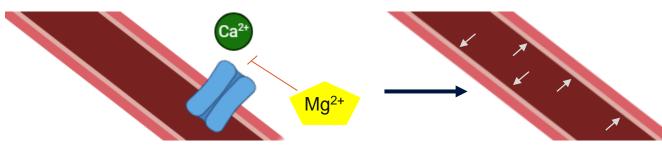
Management Goal

To prevent progression of preeclampsia to eclampsia, HELLP syndrome and other complications

Prevention

- Aspirin 81 mg daily
 - Initiated between 12 and 28 weeks gestation
 - through delivery
 - $_{\odot}$ In patients with at least 1 high risk factor
 - or more than 1 moderate risk factor

Delivery versus Expectant Management


- Timely delivery best prevention for progression to eclampsia
- Certain populations may benefit from expectant management with strict observation Source: ACOG Practice Bulletin et al., 2020

High Risk	Moderate Risk
History of preeclampsia	Obesity
Multifetal gestation	Age greater than 35
Chronic hypertension, diabetes, autoimmune disease, renal disease	Family or personal history factors
	Sociodemographic factors

Indication

• Seizure prophylaxis in preeclampsia with severe features; risk versus benefit discussion in preeclampsia without severe features

Mechanism of Action

- Magnesium blocks calcium channels in the vascular smooth muscle resulting in vasodilation
- Anticonvulsive property likely due to
 inhibiting N-methyl-D-aspartate receptors

Regimen

- 4 6 g IV loading dose (LD) over 20 30 min, followed by maintenance dose of 1 2 g/hour for 24 hours after delivery
- 10 g IM LD (5 g IM each buttock), followed by 5 g IM every 4 hours.

	MAGPIE Trial
Design	Randomized, placebo controlled international trial
Intervention	Magnesium sulfate (MgSO ₄) 4 g IV LD over 15 min, followed by 1 g/h IV infusion for 24 hours versus placebo
Inclusion	Pregnant woman or <24 hours postpartum, BP \ge 140/90 mmHg \ge 2 occasions, proteinuria, clinical uncertainty about administering magnesium sulfate
Outcome	Primary: Eclampsia or, in pregnant mothers, death of infant Secondary: Maternal morbidity, toxicity requiring discontinuation or calcium gluconate
Population	 10,141 patients from 33 countries; MgSO₄, n=5068 and placebo, n=5068 Baseline characteristics did not differ Mean age 27 years 16% had SBP > 170 mmHg at entry 13% were postpartum at randomization

Source: The Magpie Trial Collaborative Group, 2002

		MAGPIE Trial	
Primary Outcome- \downarrow eclampsia in MgSO4 group (n=40, 0.8%) vs placebo (n=96, 1.9%) (p<0.0001) - No difference in infant death (576 (12.7%), vs 558 (12.4); 95% CI –8% to 14%)			
	Characteristic	MgSO ₄ ,n=5055	Placebo, n=5055
Secondary Outcome	Any morbidity	196 (3.9%)	183 (3.6%)
	Respiratory depression	46 (0.9%)	27 (0.5%)
	Calcium gluconate	14 (0.3%)	11 (0.2%)
Critique	 Large trial suggesting benefit of MgSO₄ to decrease risk of eclampsia Greater difference in low-income countries No subgroup analysis of severe features versus no severe features Serum concentrations not disclosed 		

Monitoring

- Obtain magnesium levels every 4 6 hours in renal dysfunction or signs of toxicity
- Respiratory status
- Tendon reflexes

Adverse Events

- Result from smooth muscle relaxation
- Correlated with elevated serum concentrations and higher infusion rates
- Accumulation occurs in renal function

Magnesium sulfate side effects and toxicity		
Symptom mEq/L r		mmol/L
Therapeutic range	4 – 7	2 – 3.5
Loss of tendon reflex	>7	>3.5
Respiratory depression	>10	>5
Cardiac arrest	>25	>12.5

Management of Toxicity

- If magnesium level >8mEq/L, stop infusion and recheck every 2 hours until magnesium <7mEq/L
- Respiratory depression may require intubation
- Emergency correction with calcium gluconate 10% IV infusion over 3 minutes

Antihypertensives

- Indicated for acute-severe hypertension: SBP ≥ 160 mmHg and/or DBP ≥ 110 mmHg sustained over at least 15 minutes
- Should be administered within 30 60 minutes or as soon as possible
- Prospective study found implementing a standardized approach to treat sustained critically elevated BP decreases incidence of eclampsia by 42.6% and maternal morbidity by 16.7%

Drug	Dose	Onset	Clinical Pearls
Labetalol	10 – 20 mg IV, then 20 – 80 mg every 10 – 30 min for cumulative dose of 300 mg	1 – 2 min	Avoid in decompensated cardiac function, heart block or bradycardia
Hydralazine	5mg IV/IM, then 5 – 10mg IV every 20 – 40 min for cumulative dose 20 mg	10 – 20 min	Tachycardia, tachyphylaxis, abnormal fetal heart rate
Nifedipine (IR)	10 - 20 mg PO, then $10 - 20$ mg every $2 - 6$ hours for cumulative daily dose of 180 mg	5 – 10 min	Tachycardia, headaches

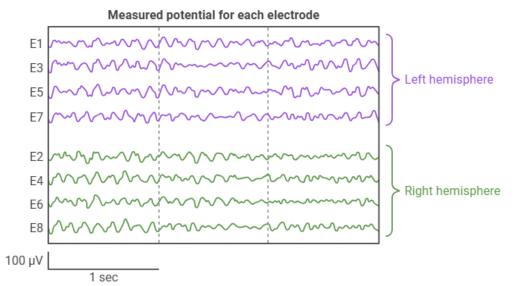
Antihypertensives

	Drugs for the treatment of very high blood pressure in pregnancy
Design	Meta analysis of randomized controlled trials
Intervention	Comparison of one antihypertensive drug to another regardless of dose or route
Inclusion	Women with severe hypertension (SBP \geq 160 mmHg and/or DBP \geq 110 mmHg) during pregnancy requiring immediate treatment
Exclusion	Postpartum women
Characteristics of included studies	 35 trials including 3,573 patients Majority of patients had DBP ≥ 110 mmHg and proteinuria or preeclampsia Agents included hydralazine, calcium channel blockers (CCBs; nifedipine, nimodipine, nicardipine), labetalol, atenolol, methyldopa, magnesium sulfate, prazosin, isosorbide

Antihypertensives

	Drugs for the treatment of very high blood pressure in pregnancy
Labetalol vs hydralazine	4 trials (269 patients); insufficient data for reliable conclusions
CCB vs hydralazine	6 (313 patients) trials reported less persistent high blood pressure (requiring additional antihypertensive agent) in CCB group vs hydralazine (8% vs 22%, RR 0.37, 95%CI 0.21 – 0.66)
Labetalol vs CCBs	1 trial (50 patients) suggested fewer side effects in nifedipine group than labetalol group (RR 2.17, 95% CI 0.98 – 4.79)
Labetalol vs methyldopa	1 trial (74 patients); insufficient date for reliable conclusions
Isosorbide vs magnesium sulfate	1 trial (36 patients) found no difference in persistent hypertension (RR 0.14, 95% CI 0.01 – 2.58), but less risk of CS delivery in isosorbide group than magnesium sulfate (RR 0.19, 95% CI 0.07 – 0.53)
Conclusion	No clear evidence one agent is preferable over the others, decision should be based on comfortability and availability.
	Best to avoid magnesium sulfate for its use as an antihypertensive

Eclampsia



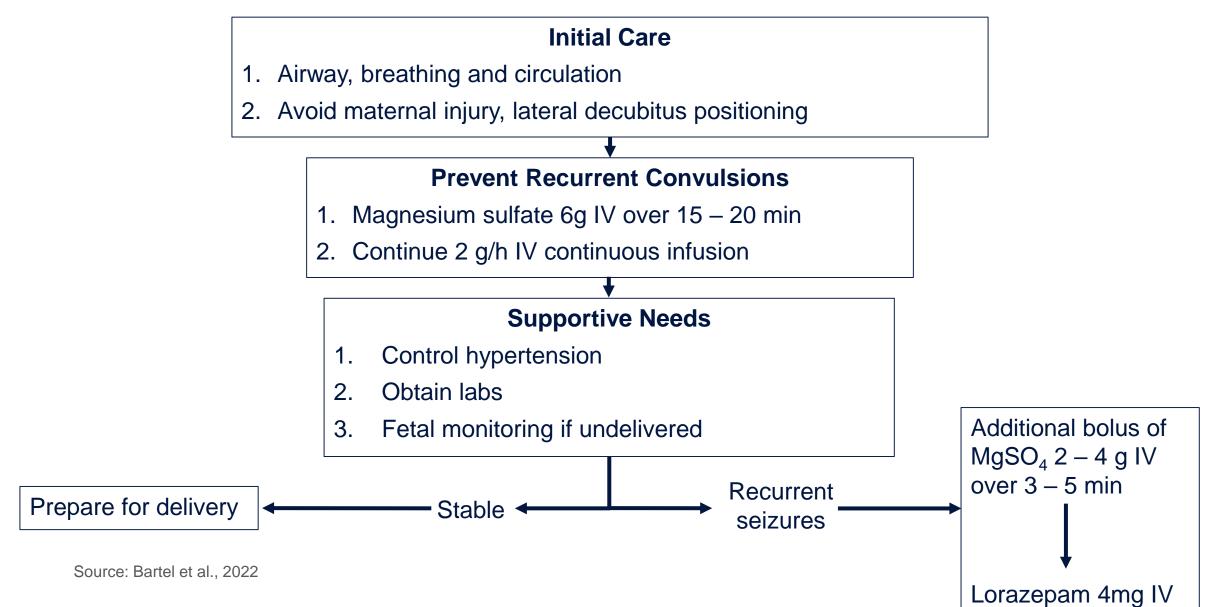
Eclampsia

- Convulsive manifestation of hypertensive disorders in pregnancy in the absence of other causative conditions
- Can occur before, during or after labor

Manifestation

- Up to 80% of cases are preceded by signs
 - Severe headache
 - Blurred vision
 - Altered mental status

• Not all cases of eclampsia are preceded by gestational hypertension or proteinuria


Complications

- Blindness
- Posterior reversible encephalopathy syndrome (PRES)

Source: ACOG Practice Bulletin et al., 2020

Eclampsia Management

Magnesium Sulfate versus Antiseizure Medications

Study	Comparator	Population	Outcome			
Meta-analysis of pregnant or postpartum patients with eclampsia	Diazepam (10 mg x1, may repeat)	7 RCTs with 1396 patients.	 ↓ maternal death (RR 0.59, 95%CI 0.38 – 0.92) ↓ recurrence of seizures (RR 0.43, 95% CI 0.33 – 0.55) No difference in neonatal mortality 			
	Phenytoin (doses ranged from 15 – 25 mg/kg)	7 RCTs with 970 patients.	 ↓ recurrence of seizures (RR 0.34, 95% CI 0.24 – 0.49) ↓ ICU admission (RR0.67, 95% CI 0.5 – 0.89) No difference in maternal mortality. 			
	Lytic cocktail (chlorpromazine, promethazine, meperidine) (doses varied)	3 trials from India with 397 patients.	 ↓ maternal death (RR 0.14, 95% CI 0.03 – 0.59) ↓ recurrence of seizures (RR 0.06, 95% CI 0.03 – 0.12) 			

HELLP

Syndrome

HELLP Syndrome

Overview

- Hemolysis, elevated liver enzymes, and low platelet count
- Severe form of preeclampsia and associated with high maternal morbidity and mortality

Diagnosis

- Lactate dehydrogenase (LDH): ≥ 600 IU/L
- AST/ALT: ≥ twice the upper limit of normal
- Platelets: $\leq 100 \times 10^{9}/L$

Clinical Presentation

- Right upper quadrant pain
- Nausea and vomiting
- Generalized malaise
- Usually occurs in third-trimester, but one-third of cases occur postpartum Source: ACOG Practice Bulletin et al., 2020

HELLP Syndrome

Monitoring

- Abdominal ultrasound to rule out liver rupture or hepatic bleeding
- Monitor LFTs and platelets every 12 hours

Management

- Delivery regardless of gestational age
- Transfer to tertiary care facility
- Supportive care
 - Treatment for preeclampsia
 - Blood transfusions if actively bleeding
- +/- corticosteroids

Assessment Question #1

Which of the following medications is considered first line for the management of preeclampsia with severe features?

- A. Norepinephrine
- B. Phenytoin
- C. Magnesium sulfate
- D. Levetiracetam

Assessment Question #1: Correct Response

Which of the following medications is considered first line for the management of preeclampsia with severe features?

- A. Norepinephrine
- B. Phenytoin
- **C.** Magnesium sulfate
- D. Levetiracetam

Patient Case #2

Patient Case #2

H&P

29 year-old F at 40 weeks of gestation presents to OBER with a planned induction. The following day, fetal deceleration was noted, patient became hypotensive and nonresponsive and sent to OR for emergency CS. The infant was delivered, but shortly after the patient lost a pulse.

Patient C	ECHO revealed							
delivered hypo		became sive and	significant RV dysfunction concerning for amniotic fluid embolism			Bleeding subsided, R function returned to baseline,		
	begi	se; ACLS ns for c arrest					decannulated, and discharged home 13 days later	
Uterine atony leading to postpartum hemorrhage with EBL of 1700 mL		C	Ongoing hemorrhage concerning for		U I	VA EC transf	lated for MO and erred to	
Managed with uterine massage, oxytocin, TXA, methylergonovine, carboprost, and misoprostol		med	disseminated intravascular coagulation despite medications, MTP, balloon tamponade; hysterectomy performed				CU	

Postpartum Hemorrhage

CONFIDENTIAL – Contains proprietary information. Not intended for external distribution.

Post-Partum Hemorrhage (PPH)

ACOG definition

 At least 1,000mL total blood loss or blood loss coinciding with symptoms of hypovolemia within 24 hours of delivery

Epidemiology

 Occurs in 3% - 5% of deliveries in obstetric patients; leading cause of maternal morbidity worldwide

Risk Factors

- Maternal obesity
- Multiple gestations
- Preeclampsia
- Prolonged or augmented labor
- Retained placenta
- Can occur without risk factors up to 20% Source: Baltaji et al., 2023; Evensen et al., 2017

Causes

- Tone
- Trauma
- Tissue
- Thrombin

PPH Management

Diagnosis

- Quantitative measurement of bleeding
- Tachycardia, orthostasis, hypotension, nausea, dyspnea, chest pain

Nonpharmacologic Management

- Manual placenta removal (if applicable)
- Airway, breathing and circulation assessment
- Massive transfusion protocol
- Uterus-conserving treatments (gauze soaked with vasopressin or carboprost (Hemabate))
- Balloon tamponade
- Hysterectomy

PPH caused by Uterine Atony

- Most common cause of PPH
- Uterus fails to contract during the third stage of labor
- Retained placenta, failure to expel placenta within 30 minutes, halts uterine contraction

Management

- Bimanual compression of the uterus
- Uterotonic medications
 - o Oxytocin
 - o Ergometrine
 - Misoprostol
 - Carboprost

Pharmacologic Management of PPH

Medication	Medication Dose		Side Effects
Oxytocin	5 – 10 IU IV bolus or 20 – 40 IU in 1L Normal Saline infusion	Induces uterine contraction and decreases uterine blood flow	Hypotension
Carboprost25 mcg IM or myometrium every 15 – 90 min for 2 mg total		Prostaglandin analogue, increases oxytocin receptors	Gastrointestinal upset
Methylergonovine0.2 mg IM every 2 – 4 hours, followed by PO for 24 – 48 hours		Increases uterine contraction, vasoconstriction	Gastrointestinal upset, hypertension
Misoprostol600 – 800 mcg SL orPO		Increases contraction of smooth muscle	Gastrointestinal upset, rigors, fevers
Tranexamic Acid (TXA)	1 g IV over 10 min	Inhibits plasmin breakdown of fibrin	Thrombotic risk

Source: Baltaji et al., 2023; Evensen et al., 2017

Effect of Early TXA Administration in PPH

WOMAN Trial		
Design	Randomized, double-blind, placebo-controlled trial	
Intervention	1 g TXA in 10 mL infused over 10 min vs placebo	
Inclusion	Women ≥ 16 y/o and PPH* after vaginal birth or CS	
Outcomes	 Primary Composite of death from all causes or hysterectomy within 42 days Secondary Thromboembolic events, surgical interventions, complications 	
Population	ulation 20,060 women; TXA, n=10,051 and placebo, n=10,009 - 46% were between ages of 26 – 33 y/o - Majority (71%) had vaginal deliveries - Majority (64%) had uterine atony	

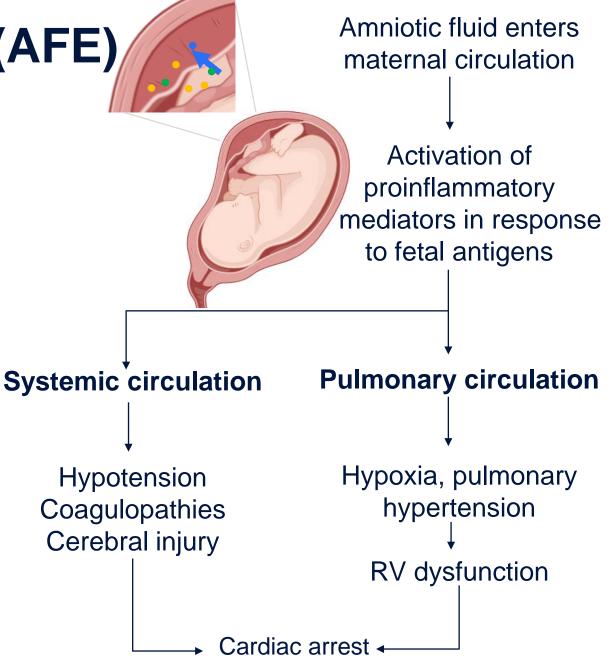
*PPH: EBL ≥ 500 mL after vaginal birth or ≥ 1000 mL after CS or any blood loss associated with hemodynamic instability

Effect of Early TXA Administration in PPH

WOMAN Trial				
	No difference in death from all cause or hysterectomy (534 (5.3%) TXA group vs 54 placebo group, p=0.65)			TXA group vs 546 (5⋅6%)
Primary	Cause of Death	ТХА	Placebo	p-value
Results	Bleeding	155 (1.5%)	191 (1.9%)	0.045
	PE	10 (0.1%)	11 (0.1%)	0.82
	Organ failure	25 (0.3%)	18 (0.2%)	0.29
Secondary Results	 ↓death due to bleeding in TXA group (89 (1·2%) vs placebo (127 (1·7%), p=0·008) when administered within 3 hours of birth ↓ laparotomy in TXA group (82 (0.8%) vs placebo group (127 (1.3%), p=0.002) No difference in thromboembolic events or complications 			
Critique	 Results consistent with the CRASH-2 trial – TXA reduces death due to bleeding when given within 3 hours of insult TXA should be considered prior to 3 hours of birth 			

Amniotic Fluid Embolism

CONFIDENTIAL – Contains proprietary information. Not intended for external distribution.


Amniotic Fluid Embolism (AFE)

Epidemiology

 1 in 40,000 deliveries with a mortality of 20% - 60%

Diagnostic Criteria

- Presence of acute hypoxic respiratory failure, hypotension or cardiac arrest
- Presence of disseminated intravascular coagulopathy (DIC)
- Manifestation of symptoms during or within 30 minutes of delivery
- Exclusion of fever

Amniotic Fluid Embolism

Risk Factors

- Operative delivery
- Cervical lacerations; uterine rupture
- Eclampsia
- Placenta complications (placenta previa, placenta accrete, placental abruption)

Management

Supportive Care

- Immediate-high quality CPR
- Venoarterial extracorporeal membrane oxygenation (VA ECMO)
- Atropine, ondansetron and ketorolac (A-OK protocol)

RV Failure

- Inotropes
 - Milrinone or dobutamine
- Vasopressors
- Pulmonary vasodilators
 - Inhaled prostacyclin
 - Inhaled nitric oxide
- Sildenafil

DIC

- Blood products
- Uterotonics for atony
- Factor products
- TXA

Disseminated Intravascular Coagulation in AFE

• Present in up to 83% of cases

Pathophysiology

- Hypercoagulable state characterized by microvascular thrombi and life-threatening bleeding due to the consumption of clotting factors and platelets
- Secondary to systemic inflammatory response releasing procoagulants into circulation

Management

- Massive transfusion protocol
- Utilization of thromboelastography (TEG) if available
- Antifibrinolytics if hyperfibrinolysis present
- Recombinant activated factor VII is controversial

Use of Recombinant Factor VIIa (rVIIa) in AFE

Leighton et al., 2011		
Design	Systematic review of case reports from 2003 to 2009	
Intervention	AFE patients receiving rVIIa vs no rVIIa	
Inclusion	Meet the definition of AFE (once cardiac symptom + pulmonary symptom + DIC) and either received rVIIa OR did not receive rVIIa but had surgery	
Outcome	Primary: Risk of negative outcome (permanent disability or death) Secondary: Full recovery, permanent disability, death	
Population	 16 rVIIa cases vs 28 non-rVIIa case Average age 32 – 35 y/o More patients received massive transfusion in rVIIa (93%) vs non-rVIIa (68%) Higher median PRBC units transfused in the rVIIa (16) vs non-rVIIa (11.5) 	

Use of Recombinant Factor VIIa (rVIIa) in AFE

Leighton et al., 2011			
Primary Outcome			
	Characteristic	rVIIa case	Non-rVIIa case
Secondary Outcome	Death	8 (50%)	7 (25%)
	Permanent disability	6 of 8 (75%)	4 of 21 (19%)
	Full recovery	2 (12.5%)	17 (60.7%)
	Surgery	16 (100%)	28 (100%)
			· · · · · · · · · · · · · · · · · · ·
Critique	 All case reports "Permanent disability" and "full recovery" were not defined Those who received rVIIa were likely sicker at baseline resulting in worse outcomes 		

Assessment Question #2

A 32 year old F at 39 weeks of gestation presents to OBER for a scheduled induction. Immediately following vaginal delivery, patient begins seizing and becomes hypoxic (O_2 saturation 79%) and hypotensive (BP 70/40 mmHg). Platelets noted to be 45 x10⁹ /L and estimated blood loss is 1,050 L.

Which of the following obstetric emergencies might the above scenario describe?

- A. Amniotic fluid embolism
- B. Postpartum hemorrhage
- C. Disseminated intravascular hemorrhage
- D. All of the above

Assessment Question #2: Correct Response

A 32 year old F at 39 weeks of gestation presents to OBER for a scheduled induction. Immediately following vaginal delivery, patient begins seizing and becomes hypoxic (O_2 saturation 79%) and hypotensive (BP 70/40 mmHg). Platelets noted to be 45 x10⁹ /L and estimated blood loss is 1,050 L.

Which of the following obstetric emergencies might the above scenario describe?

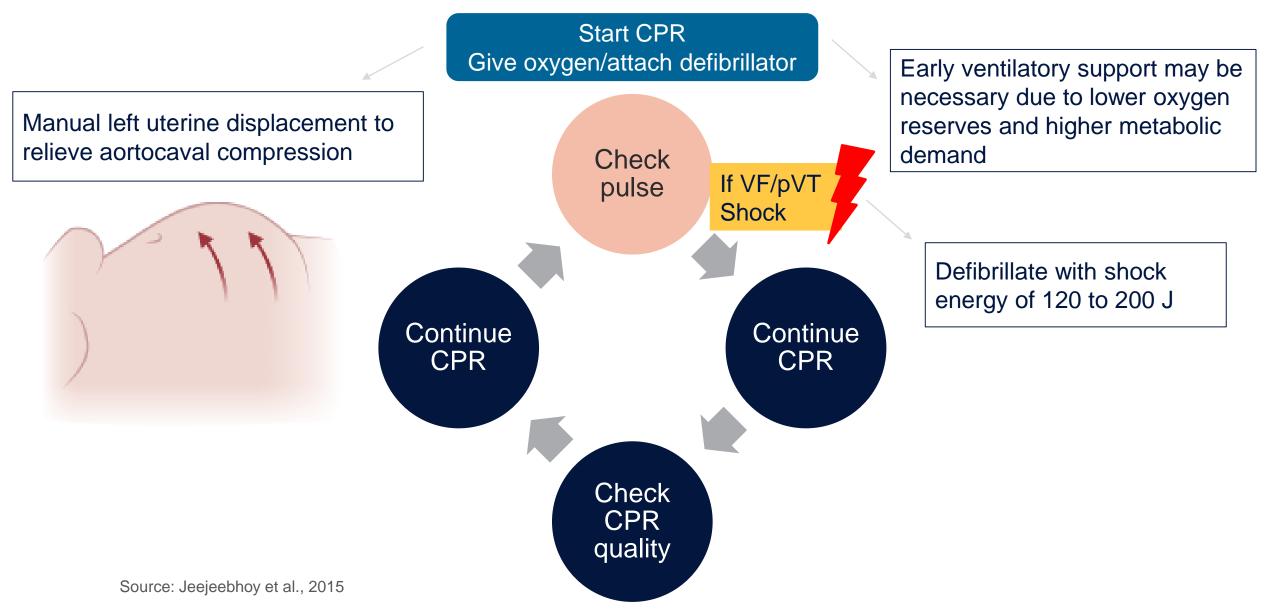
- A. Amniotic fluid embolism
- B. Postpartum hemorrhage
- C. Disseminated intravascular hemorrhage
- **D.** All of the above

Cardiac Arrest in Pregnancy

CONFIDENTIAL – Contains proprietary information. Not intended for external distribution.

Cardiac Arrest in Pregnancy

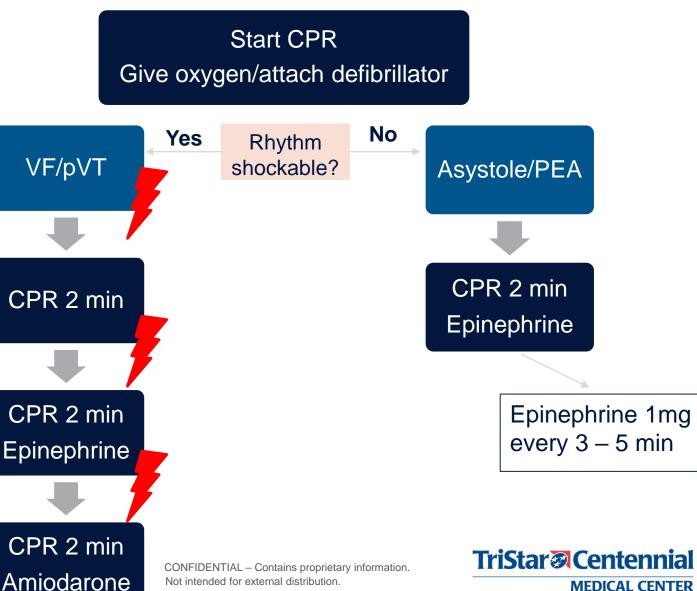
Epidemiology


- 1 cardiac arrest per 12,000 admissions for delivery
- Rate of survival to hospital discharge up to 58.9% following maternal cardiac arrest

Physiologic changes in pregnancy

- Enlarging uterus \rightarrow compresses aorta and decreases cardiac return
- Vasodilatory processes \rightarrow systemic hypotension
- Increased ventilation \rightarrow respiratory alkalosis with metabolic compensation
- Reduced residual lung capacity and increased oxygen consumption \rightarrow worsens hypoxia
- Reduced gastric motility and relaxed gastroesophageal sphincters \rightarrow risk of aspiration

Basic Life Support in Pregnancy



Advanced Cardiac Life Support (ACLS) in Pregnancy

- ACLS medications and doses do not differ from the non-pregnant patient
- Fetal concerns are overshadowed by the arrest outcome
- FDA categories of fetal risk of medications do not apply in cardiac arrest
- Perimortem cesarean delivery may be considered and is recommended after 4 minutes of

CPR

Amiodarone 300mg bolus x1, then 150mg bolus for subsequent doses

Source: Jeejeebhoy et al., 2015

Post resuscitation Care

General

- Place into left lateral decubitus position to decrease aortocaval compression
- Continuous fetal heart rate monitoring if infant undelivered

Fluids and Vasopressors

- · Fluid administration should be individualized and Lactate Ringers is preferred
- Norepinephrine is first-line
- Vasopressin should be used with caution; vasopressin stimulates potent uterine contraction via activation of arginine vasopressin (AVP) receptors in the uterus

Analgesia and Sedation

• Opioids are first line, dexmedetomidine and propofol preferred over benzodiazepines

Post resuscitation Care

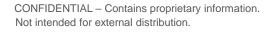
Drug/ Class	Crosses Placenta	Safe in pregnancy	Safe in lactation
Stress ulcer prophylaxis			
Famotidine	\checkmark	\checkmark	\checkmark
Pantoprazole	\checkmark	\checkmark	\checkmark
Anticoagulants			
Heparin	X	\checkmark	\checkmark
Warfarin	\checkmark	X	\checkmark
Direct Oral Anticoagulant	\checkmark	X	X
Vasodilators			
Nitroglycerin	\checkmark	?	?
Nitroprusside	\checkmark	X	X
Antiarrhythmics			
Beta-blockers	\checkmark	±	?
CCB	\checkmark	\checkmark	\checkmark
Amiodarone	\checkmark	X	?
Paralytics			
Nondepolarizing	\checkmark	\checkmark	\checkmark
Depolarizing	X	\checkmark	?

Source: Heavner et al., 2023

Assessment Question #3

True or False:

In the setting of a cardiac arrest, epinephrine doses should be adjusted to reduce fetal teratogenicity.



Assessment Question #3: Correct Response

True or False:

In the setting of a cardiac arrest, epinephrine doses should be adjusted to reduce fetal teratogenicity.

False

Extracorporeal Membrane **Oxygenation in** Pregnancy

CONFIDENTIAL – Contains proprietary information. Not intended for external distribution.

ECMO in Pregnancy

May be indicated in pregnant or postpartum patients with multi-organ dysfunction secondary to cardiac arrest or acute respiratory distress syndrome (ARDS)

Bian et al., 2024			
Design	Meta-analysis of 38 studies		
Inclusion	Inclusion Critically ill obstetric patients requiring ECMO support		
Results	CharacteristicTotal, n=917Indication for ECMO18 (4 studies)AFE18 (4 studies)Peripartum cardiomyopathy65 (6 studies)ARDS397 (23 studies)Cardiac arrest31 (3 studies)VV-ECMO267VA-ECMO130Survival65% (95% Cl 56 - 74%)		

Conclusion

CONFIDENTIAL – Contains proprietary information. Not intended for external distribution.

Conclusion

- Obstetric emergencies in the ICU are rare, but it is imperative to understand how to manage them
- Many pharmacotherapy and physiologic considerations exist and must be considered in the treatment plan
- Magnesium sulfate is the drug of choice for preeclampsia and eclampsia
- Multiple emergencies exist in the immediate postpartum period including PPH, AFE and DIC
- Special consideration should be taken when pregnant or postpartum patients suffer cardiac arrest and require ECMO

References

- Baltaji S, Noronha SF, Patel S, Kaura A. Obstetric Emergencies. Crit Care Nurs Q. 2023;46(1):66-81
- Pollock W, Rose L, Dennis CL. Pregnant and postpartum admissions to the intensive care unit: a systematic review. Intensive Care Med. 2010;36(9): 1465-1474
- Kelsey JJ. Obstetric Emergencies in the ICU. *PSAP-VII Critical and Urgent Care.*
- ACOG Committee on Obstetric Practice and Society for Maternal-Fetal Medicine. *Committee Opinion No. 579. Definition of term pregnancy.* 2013
- Jeejeebhoy FM, Zelop CM, Lipman S, et al. Cardiac Arrest in Pregnancy: A Scientific Statement From the American Heart Association. *Circulation*. 2015;132(18):1747-1773.
- Bian, W., Liu, S., Zhou, P. et al. Extracorporeal membrane oxygenation in obstetrical patients: a meta-analysis. J Artif Organs (2024).
- Evensen A, Anderson JM, Fontaine P. Postpartum hemorrhage: prevention and treatment. Am Fam Physician. 2017;95(7):442-449.
- WOMAN Trial Collaborators. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial [published correction appears in Lancet. 2017 May 27;389(10084):2104. doi: 10.1016/S0140-6736(17)31220-5.]. *Lancet*. 2017;389(10084):2105-2116.
- Clark SL. Amniotic fluid embolism. Obstet Gynecol. 2014;123(2, pt 1):337-348
- Pacheco, Luis D. et al. Amniotic fluid embolism: diagnosis and management. American Journal of Obstetrics & Gynecology. 2016; 215(2)B16 B24
- Eke, A.C., Gebreyohannes, R.D., Fernandes, M.F.S. and Pillai, V.C. (2023), Physiologic Changes During Pregnancy and Impact on Small-Molecule Drugs, Biologic (Monoclonal Antibody) Disposition, and Response. J Clin Pharm, 63: S34-S50.
- Duley L, Meher S, Jones L. Drugs for treatment of very high blood pressure during pregnancy. Cochrane Database of Systematic Reviews 2013, Issue 7. Art. No.: CD001449

References

- Leighton, Barbara L. M.D.^{*}; Wall, Michael H. M.D., F.C.C.M.[†]; Lockhart, Ellen M. M.D.[‡]; Phillips, Louise E. B.Sc. (Hons), M.P.H., Ph.D.[§]; Zatta, Amanda J. B.Sc. (Hons), Ph.D.^{II}. Use of Recombinant Factor VIIa in Patients with Amniotic Fluid Embolism: A Systematic Review of Case Reports. The Journal of the American Society of Anesthesiologists 115(6):p 1201-1208
- Ives, C, Sinkey, R, Rajapreyar, I. et al. Preeclampsia—Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. JACC. 2020 Oct, 76 (14) 1690–1702.
- Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet Gynecol. 2020;135(6):e237-e260.
- Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomised placebo-controlled trial. *The Lancet.* 2002. 359(9321),1877 1890
- Duley L, Henderson-Smart DJ, Walker GJA, Chou D. Magnesium sulphate versus diazepam for eclampsia. Cochrane Database of Systematic Reviews 2010, Issue 12. Art. No.: CD000127
- Duley L, Henderson-Smart DJ, Chou D. Magnesium sulphate versus phenytoin for eclampsia. Cochrane Database of Systematic Reviews 2010, Issue 10. Art. No.: CD000128.
- Duley L, Gülmezoglu AM, Chou D. Magnesium sulphate versus lytic cocktail for eclampsia. Cochrane Database of Systematic Reviews 2010, Issue 9. Art. No.: CD002960
- Fishel Bartal. Eclampsia in the 21st century. Am J Obstet Gynecol 2022
- Shields LE, Wiesner S, Klein C, Pelletreau B, Hedriana HL. Early standardized treatment of critical blood pressure elevations is associated with a reduction in eclampsia and severe maternal morbidity. American Journal of Obstetrics and Gynecology. 2017;216(4):415.
- Heavner MS, Erdman G, Barlow B, et al. Caring for two in the ICU: Pharmacotherapy in the critically ill pregnant patient. *Pharmacotherapy*. 2023;43(5):403-418.

Thank You!

Kelsey-Anne Forrest, PharmD PGY2 Critical Care Pharmacy Resident KelseyAnne.Forrest@hcahealthcare.com

CONFIDENTIAL – Contains proprietary information. Not intended for external distribution.

