Getting the Knack of NAC: N-Acetylcysteine in Acute Liver Injury

A presentation for HealthTrust Members May 28, 2025

Kayla Dodson, PharmD
PGY1 Pharmacy Resident
TriStar Centennial Medical Center

Tristan Jernigan, PharmD
PGY1 Pharmacy Resident
TriStar Centennial Medical Center

Preceptors: **Hana Davis**, PharmD, Critical Care, TriStar Centennial Medical Center, Nashville, TN **Lauren Wells**, PharmD, BCEMP, Emergency Medicine Pharmacist/

Pharmacist in Charge, TriStar Bellevue Emergency Room, Nashville, TN

Disclosures

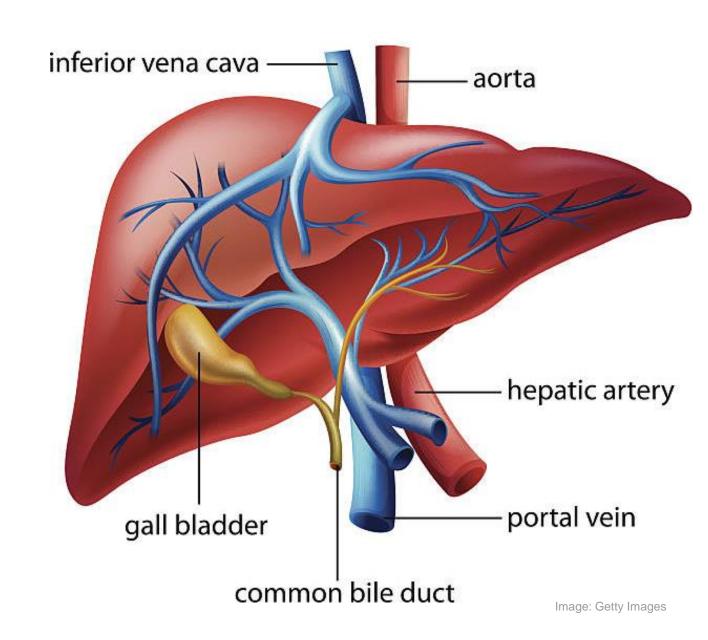
- Neither the speakers nor their preceptors for this educational activity have relevant financial relationships to disclose with ineligible companies.
- Note: This program may contain the mention of suppliers, brand products, services, or drugs
 presented in a case study or comparative format using evidence-based research. Such
 examples are intended for educational and informational purposes only and should not be
 perceived as an endorsement of any particular supplier, brand, product, service or drugs.
- The content presented is for informational purposes only & is based upon the presenter(s) knowledge & opinion. It should not be relied upon without independent consultation with & verification by appropriate professional advisors. Individuals & organizations shall have sole responsibility for any actions taken in connection with the content herein. HealthTrust, the program presenter(s) & their employers expressly disclaim any & all warranties as to the content as well as any liability resulting from actions or omissions of any individual or organization in reliance upon the content.

Pharmacist & Nurse Objectives

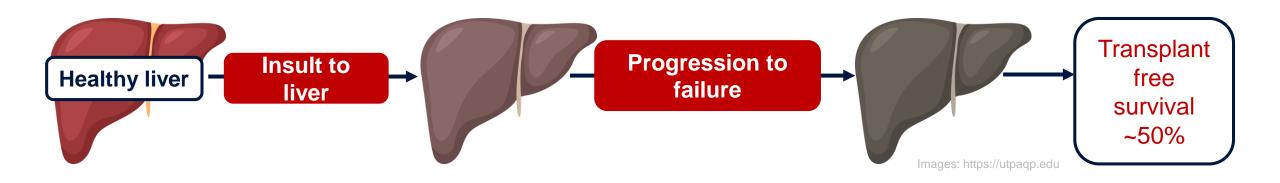
- Recall the major types of acute liver injury and common etiologies
- Identify the mechanism of action and treatment recommendations for N-acetylcysteine (NAC) in acute liver injury
- Recognize evidence-based recommendations for the use of NAC in nonacetaminophen induced liver injury

Pharmacy Technician Objectives

- Recall the indication for use of N-Acetylcysteine (NAC) in acute liver injury patients
- Recognize the appropriate dosing schedules and preparations of NAC
- Identify storage and compounding considerations for NAC therapy in the context of non-acetaminophen related liver injury


Abbreviations

- AJG: American Journal of Gastroenterology
- AASLD: American Association for the Study of Liver Diseases
- ALT: alanine transaminase
- APAP: Acetaminophen
- AST: aspartate aminotransferase
- ALI: Acute liver injury
- ALF: Acute liver failure
- CE: Cerebral edema
- CT: Computed tomography
- DILI: Drug-induced liver injury
- EASL: European Association for the Study of the Liver


- HE: Hepatic encephalopathy
- HELLP: Hemolysis, elevated liver enzymes, low platelet count
- ICP: intracranial pressure
- INR: international normalized ratio
- LFT: liver function test
- MELD: Model for End-Stage Liver Disease
- NAC: N-acetylcysteine
- NAPQI: N-acetyl-p-benzoquinone imine
- NSAIDs: non-steroidal anti-inflammatory drugs
- TIPS: Transjugular intrahepatic portosystemic shunt
- ULN: upper limit of normal

Liver Physiology

- Storage
 - Blood, iron, vitamins
- Filtration
- Metabolism
 - Protein, medications
- Synthesis
 - Cholesterol, phospholipids, lipoproteins, fat
- Production of coagulation factors
- Bile secretion

Acute Liver Injury vs. Failure

Acute Liver Injury (ALI)

- No preexisting liver disease
- No altered level of consciousness
- Transaminitis (> 2-3x ULN)

Acute Liver Failure (ALF)

- No preexisting liver disease
- Any degree of hepatic encephalopathy (HE)
- Coagulopathy (INR ≥1.5)
- Duration < 26 weeks; rapid onset</p>

ULN: upper limit of normal; INR: international normalized ratio

Acute Liver Failure

- First described in 1970
- 1–6 cases per million population in developed countries
 - 2,000–3,000 cases per year in the United States
- True incidence is likely underestimated
- Most commonly caused by acetaminophen (APAP) toxicity
 - 28% mortality rate one-third requiring liver transplantation
- Acute decompensated cirrhosis or acute on chronic liver failure are not included in definition

Etiologies of Acute Liver Injury and Failure

<u>Viral</u>

Hepatitis, herpes, cytomegalovirus, Epstein-Barr

Drug-induced

Acetaminophen, antimicrobials, NSAIDs, statins, amiodarone, antineoplastics, supplements

Toxins

Alcohol, amanita mushroom, kava, green tea extract

<u>Vascular</u>

Budd-Chiari, ischemia, thrombosis, hepatic veno-occlusive disease

Metabolic

Hereditary hemochromatosis, alpha-I antitrypsin deficiency, Wilson disease, acute fatty liver of pregnancy, HELLP syndrome

Other

Autoimmune, malignancy, heatstroke, indeterminate cause

NSAIDs: non-steroidal anti-inflammatory drugs, HELLP: hemolysis, elevated liver enzymes, low platelet count

Clinical Presentation

- Fatigue
- Right upper quadrant pain
- Nausea and vomiting
- Jaundice
- Hypoglycemia
- Abnormal liver function tests (LFTs)
- Coagulopathy
- Altered mental status
- Cerebral edema (CE)
- Multiorgan failure
- Shock

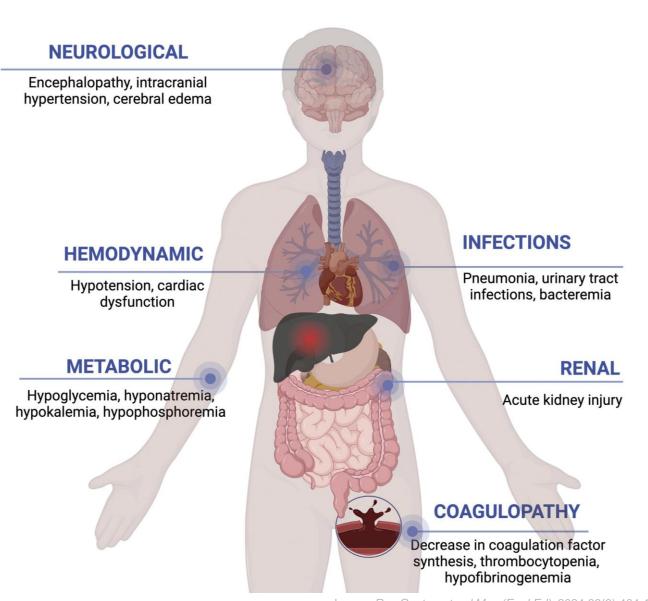


Image: Rev Gastroenterol Mex (Engl Ed). 2024;89(3):404-1

Acute Liver Failure Classification

O'Grady Classification

Classifies patients based on the time between the presentation of jaundice and the onset of hepatic encephalopathy

Hyperacute

- Onset < 7 days
- Hepatitis A and E
- Acetaminophen toxicity, ischemic injury
- High risk of cerebral edema (CE)
- Best prognosis without transplantation

Acute

- Onset 7-21 days
- Hepatitis B infection
- Intermediate risk of CE

Subacute

- Onset >21 days
- Non-acetaminophen DILI
- Low risk of CE

Sources: Shingina A, et al. *Am J Gastroenterol*. 2023;118(7):1128-53 O'Grady JG, et al. *Lancet*. 1993;342(8866):273-5.

West-Haven Criteria for Hepatic Encephalopathy

Grade	Symptoms	Management
0	No clinical evidence of altered mentation	Observation
1	Diminished awareness, short attention span, altered sleep	Baseline CT headInitiate transfer to transplant center
2	Lethargy, disoriented to time, inappropriate behavior, dyspraxia, asterixis	Transfer to intensive care unitHourly neuro checks
3	Somnolence, confusion, gross disorientation, bizarre behavior	IntubationRepeat CT headAvoid benzodiazepines and opioids
4	Coma	 Repeat CT head Consider intracranial pressure (ICP) monitoring Treat cerebral edema

Acute Liver Failure Classification

King's College Criteria

Predicts risk of mortality and need for liver transplantation in both acetaminophen and non-acetaminophen induced acute liver failure

Acetaminophen-induced

- Arterial pH < 7.3 after resuscitation and
 >24 h since ingestion
- Lactate >3 mmol/L OR the following criteria:
 - HE > Grade 3
 - SCr > 3.4 mg/dL
 - INR > 6.5

Non-acetaminophen-induced

- INR > 6.5 *OR* 3 out of 5 criteria:
 - Unfavorable etiology
 - Age < 10 years or > 40 years
 - Duration of jaundice to encephalopathy > 7 days
 - Bilirubin > 17.4 mg/dL
 - INR > 3.5

Model for End-Stage Liver Disease (MELD)

- Originally developed to predict three-month mortality in patients with cirrhosis undergoing transjugular intrahepatic portosystemic shunt (TIPS) procedures
- Validated as a prognostic tool in ALF
- Includes bilirubin, sodium, INR, serum creatinine, and dialysis status

MELD Score	Mortality	
<u><</u> 9	1.9 %	
10-19	6.0 %	
20-29	19.6 %	
30-39	52.6 %	
<u>≥</u> 40	71.3 %	

Patients presenting with MELD >25 are at high risk of poor outcomes

Pharmacist/RN Assessment Question #1:

- Which of the following is the most common drug-induced etiology of acute liver failure in the US?
 - A. Steroids
 - B. Acetaminophen
 - C. Non-steroidal anti-inflammatory drugs
 - D. Beta blockers

Pharmacist/RN Question #1: Correct Response

- Which of the following is the most common drug-induced etiology of acute liver failure in the US?
 - A. Steroids
 - B. Acetaminophen
 - C. Non-steroidal anti-inflammatory drugs
 - D. Beta blockers

Acetaminophen Toxicity

Epidemiology

- Most acetaminophen (APAP) overdoses result in limited toxicity and very low mortality rates
- Leading cause of acute hepatic failure in United States
 - Mortality rates up to 30%

Single Ingestion

- Usually intentional
- Single dose >10-15 g

Chronic Ingestion

- Usually unintentional
- Large quantities (>10 g) over several days

Acetaminophen Basics

- Most widely used analgesic-antipyretic worldwide
- Available in many combination products and formulations
 - Analgesics, opioids, sedatives, antihistamines, decongestants, expectorants
- Common dosing
 - Adult: 650-1,000 mg every 4-6 h
 - Maximum: 3,000-4,000 mg/day
- Pharmacology
 - Centrally acting
 - Indirect COX inhibition
 - Modulation of serotonin and cannabinoid receptors

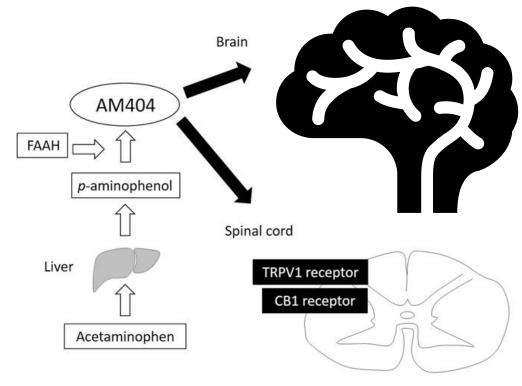


Image: Front Pharmacol. 2020;11:580289

Acetaminophen Metabolism

- 90% via hepatic conjugation to inactive metabolites
- 50-60% via glucuronidation
- 25-35% via sulfation
- 5% oxidized via CYP
 - Neutralized by glutathione

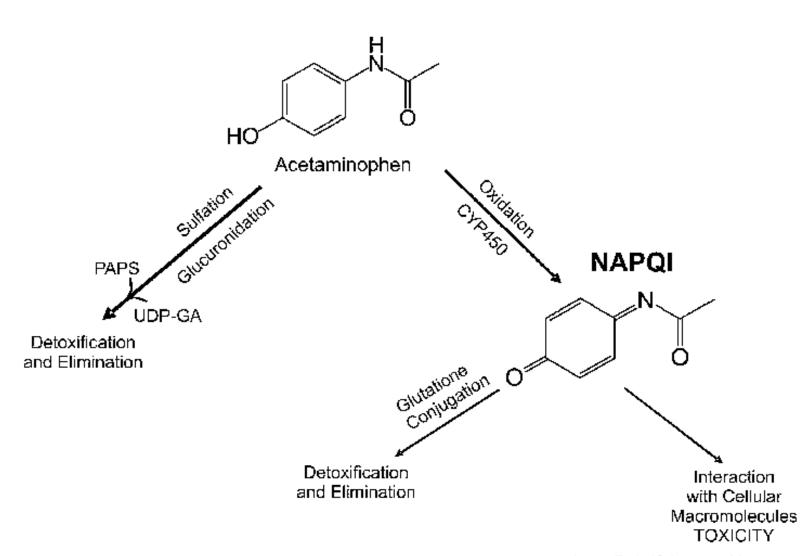


Image: Toxicol Sci. 2011;120(1):33-41.

Acetaminophen Toxicity

- Dose-related toxicity
 - Single intentional overdose of >10-15 g
 - Unintentional overdose of >10 g over several days
- Fasting or ingestion of alcohol may contribute to toxicity
- Acute vs. chronic toxicity

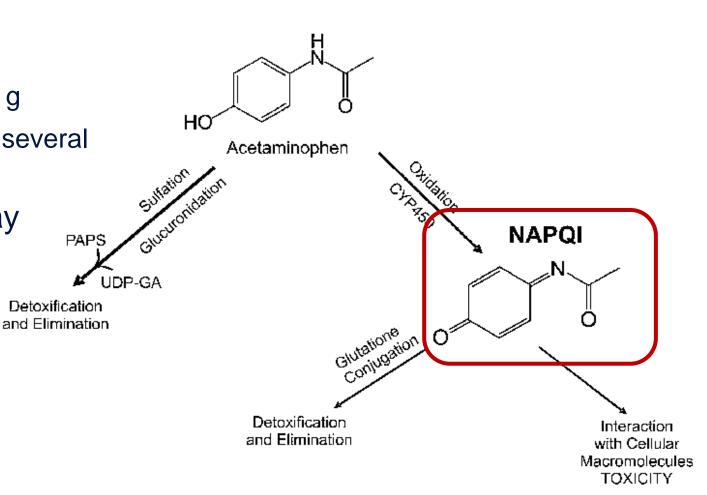


Image: Toxicol Sci. 2011;120(1):33-41.

Clinical Stages of Acetaminophen Toxicity

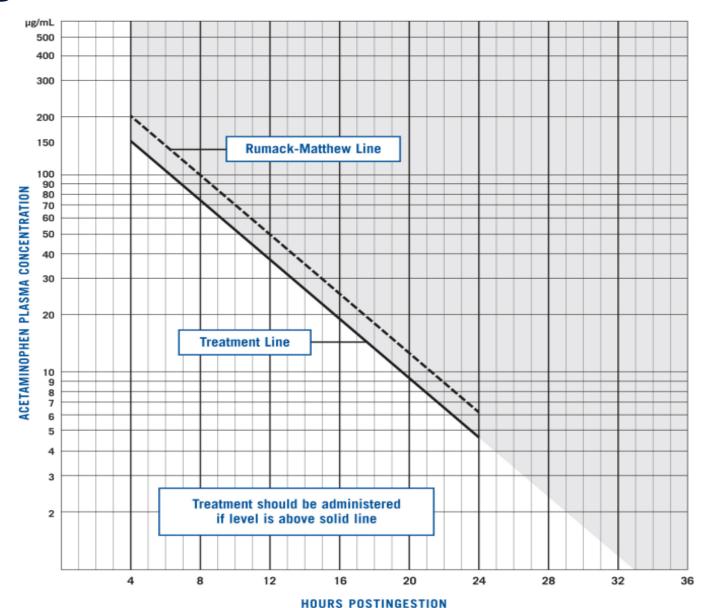
96 h 24-48 h LFTs peak Elevated AST/ALT Recovery or Stage 3 Abdominal pain Stage 1 progression Stage 4 Stage 2 0-24 h 72-96 h Non-specific symptoms Elevated LFTs, bilirubin, INR, SCr Jaundice, HE, anuria

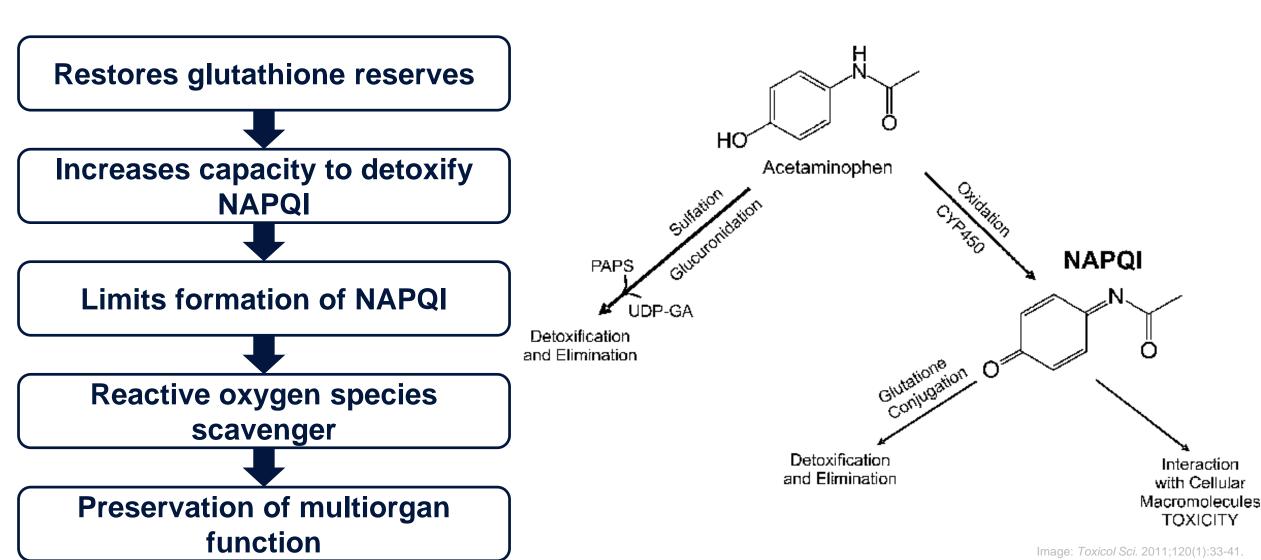
Management of Acetaminophen Toxicity

- Poison control consultation
- Early gastric decontamination if ingestion < 4 h
 - 1-2 g/kg single dose of activated charcoal
- N-acetylcysteine (NAC)

Guideline recommendation if positive APAP level or evidence of liver injury even if time of

ingestion is unknown


- Rumack-Matthew nomogram
- Fomepizole
- Dialysis
- Liver transplantation


Image: America's Poison Centers

Rumack-Matthew Nomogram

- Used for acute ingestions only
- Based on exposures to 325 mg immediate release tablets
- Cannot plot on graph until 4 h post ingestion
 - Serum levels drawn prior may not reflect peak levels
- Treatment warranted for values above black solid line

N-acetylcysteine Mechanism of Action

NAC Dosing

Oral Administration

140 mg/kg once

70 mg/kg q4h for 17 doses

Intravenous Administration

3 Bag Regimen

1st dose: 150 mg/kg over 1 h 2nd dose: 50 mg/kg over 4 h

3rd dose: 100 mg/kg over 16 h

2 Bag Regimen

1st dose: 200 mg/kg over 4 h

2nd dose: 100 mg/kg over 16 h

NAC Treatment

- Adverse effects
 - Oral emesis; repeat dose if vomiting within 1 h of administration
 - IV flushing; anaphylactoid reaction
- Studies have demonstrated oral and IV are equally effective
- Repeat APAP level and liver enzymes after 12-20 h of treatment
- NAC can be discontinued if APAP level is undetectable and transaminases are improving
 - May continue treatment after 21 h based on APAP level
 - Continuing treatment beyond the initial protocol may be based on elevated APAP level, persistent coagulopathy (INR>1.5), or encephalopathy

Technician Assessment Question #1

- Which of the following is the most common indication for using NAC in acute liver injury patients?
 - A. Mushroom toxicity
 - B. Viral hepatitis
 - C. Acetylsalicylic acid toxicity
 - D. Acetaminophen toxicity

Technician Assessment Question #1: Correct Response

- Which of the following is the most common indication for using NAC in acute liver injury patients?
 - A. Mushroom toxicity
 - B. Viral hepatitis
 - C. Acetylsalicylic acid toxicity
 - D. Acetaminophen toxicity

Fomepizole

- Off-label use as adjunctive therapy in acetaminophen toxicity
 - Consider in patients with delayed presentation/identification, evidence of hepatotoxicity despite adequate NAC therapy, or in massive acetaminophen ingestion
 - Massive ingestion: >30 g, serum APAP concentration >300 mcg/mL at any time, or a multiplication product (serum APAP x ALT) of ≥ 10,000
- Proposed mechanism
 - Blunt oxidative metabolism of acetaminophen to NAPQI via CYP 2E1 inhibition
- Dosing
 - 15 mg/kg IV over 30 mins, followed by 10 mg/kg IV every 12 hours
 - Dose adjustments required in renal replacement therapy
- Cost remains limiting factor

Fomepizole Case Studies

Case Report	Initial Labs	Management	Result
33 y/o M with history of alcohol abuse; ingested 25,000 mg APAP over 2 days	APAP: 337 mg/L AST: 137 IU/L ALT: 194 IU/L INR: 2.2 Lactate 4.1 mmol/L	NAC Fomepizole 15 mg/kg x1	INR normalized in 3 days, peak LFTs <1000 IU/L, medically cleared for discharge at 3 days
47 y/o F; ingested 6,000 mg over 2-3 days	APAP: 10 APAP*AT: 26,322 Lactate 12.1 mmol/L	NAC Fomepizole 15 mg/kg x1	Full recovery with no signs of liver failure at discharge
45 y/o M with history of epilepsy and alcohol abuse; unknown ingestion	APAP: >377 mg/L AST: 14 U/L ALT 47 U/L	NAC Fomepizole 15 mg/kg CRRT NAC boluses and fomepizole 10 mg/kg x2 doses	CRRT stopped after 12 hours Full recovery with no significant liver injury Discharged to inpatient psych day 8

Pharmacist/RN Assessment Question #2

- Which of the follow is a mechanism of action associated with NAC in the treatment of acetaminophen-induced acute liver failure?
 - A. Restores glutathione reserves
 - B. Decreases capacity to detoxify NAPQI
 - C. Promotes formation of NAPQI
 - D. Directly removes acetaminophen from the body

Pharmacist/RN Assessment Question #2: Correct Response

 Which of the follow is a mechanism of action associated with NAC in the treatment of acetaminophen-induced acute liver failure?

- A. Restores glutathione reserves
- B. Decreases capacity to detoxify NAPQI
- C. Promotes formation of NAPQI
- D. Directly removes acetaminophen from the body

Technician Assessment Question #2

 Which formulation of NAC is most commonly used for acetaminophen toxicity?

- A. Oral NAC
- B. IV 3 bag method
- C. IV 2 bag method
- D. IV 1 bag method

Technician Assessment Question #2: Correct Response

 Which formulation of NAC is most commonly used for acetaminophen toxicity?

- A. Oral NAC
- B. IV 3 bag method
- C. IV 2 bag method
- D. IV 1 bag method

Non-Acetaminophen Toxicity

Management of Non-APAP Toxicity

- Determining etiology is paramount in order to guide treatment and provide prognostic information
- Supportive strategies for all patients
 - Hemodynamic support
 - Hepatic encephalopathy correction
 - Intracranial pressure monitoring and adjunctive agents
 - Coagulopathy
 - Correction is recommended in patients with active bleeding
 - Nutritional and metabolic support

NAC in the Management of Non-APAP Toxicity

- N-acetylcysteine
 - 2023 American Journal of Gastroenterology (AJG) Acute Liver Failure Guidelines: "In patients with non-APAP ALF, we suggest the initiation of intravenous NAC"
- Populations studied largely consist of viral hepatitis followed by drug-induced liver injury
- Other potential indications
 - Amanita phalloides poisoning
 - Ischemic liver injury (due to congestive heart failure, sepsis, traumatic injury, or major surgery)
 - Indeterminate cases

Proposed Mechanisms of NAC in Non-APAP ALF

Replenishes glutathione stores

Anti-inflammatory effects blunt cytokine response

Precursor for glutathione synthesis

Antioxidant effects decrease free radical damage

Microcirculatory vasodilation via nitric oxide and cyclic guanosine monophosphate (cGMP) regeneration

Current Evidence of NAC in Non-APAP Liver Injury

2011 AASLD position paper on ALF: "N-acetylcysteine may be beneficial for acute liver failure due to drug-induced liver injury" outside of acetaminophen toxicity

2017 European Association for the Study of the Liver (EASL) guidelines: "NAC may improve outcomes in non-paracetamol induced liver injury"

2023 AJG Acute Liver Failure Guidelines: "In patients with non-APAP ALF, we suggest the initiation of intravenous NAC"

AASLD: American Association for the Study of Liver Diseases; EASL: European Association for the Study of the Liver; AJG: American Journal of Gastroenterology

Lee WM, et al. Gastroenterology. 2009;137(3):856-64, 864.e1.

Study Design

Prospective, randomized, double blind placebo controlled trial

Population

- Adults, evidence of ALF (encephalopathy and INR ≥1.5, onset <24 weeks
- Excluded patients with acetaminophen overdose, shock liver, previously received NAC
- DILI (n=45), autoimmune hepatitis (n=26), HBV (n=37), unknown (n=41)

Intervention

- NAC: 150 mg/kg/h for 1 h \rightarrow 12.5 mg/kg/h for 4 h \rightarrow 6.25 mg/kg for 67 h
- Placebo: dextrose 5%

Outcomes

- Primary: overall survival at 21 days
- **Secondary:** transplant-free survival at 21 days, transplant rate, hospital length of stay, number of organ systems failing

Baseline Characteristics	NAC (n=81)	Placebo (n=92)
Age, years	42 (17-69)	40.5 (18-71)
Hepatic encephalopathy grade I-II*	73% (63-83)	62% (51-72)
Symptoms to coma, days	15 (0-1170	17 (0-69)
Jaundice to coma, days	7 (0-153)	12 (0-65)
Bilirubin, mg/dL	22.3 (0.7-51)	20.3 (0.7-62)
INR	2.4 (1.4-20.1)	2.9 (1.1-14)
ALT, IU/L	999 (13-10,153)	756.5 (31-13,000)
MELD	32 (12-57)	33 (19-49)

Results presented as median (range)

^{*}Hepatic encephalopathy grade I-II presented as % (95% CI)

Outcome	NAC (n=81)	Placebo (n=92)	P value	
	Primary Outcome			
Overall survival	70% (60-81)	66% (56-77)	0.283	
Secondary Outcomes				
Transplant-free survival	40% (28-51)	27% (18-37)	0.043	
Transplantation rate	32% (21-43)	45% (34-55)	0.093	
Hospital length of stay, days	9	13	0.056	
Number of organ system failures	No difference between groups 0.923		0.923	

Results presented as % with 95% CI or average

- Similar safety profile with the exception of nausea and vomiting (NAC: 14%, placebo: 4%; p=0.031)
- Patients with DILI or HBV showed improved outcomes with NAC compared with those with autoimmune hepatitis or indeterminate etiologies

Conclusion

- NAC improves transplant-free survival in patients with non-APAP induced acute liver injury, with no significant differences in overall survival
 - Improvement in transplant-free survival primarily observed in Grade I-II HE on admission

Interpretation

- First to demonstrate advantages to NAC in non-APAP induced acute liver injury
- Included a variety of etiologies of acute liver injury; excluded patients with shock liver
- Majority of patients in both groups did not complete full NAC treatment (NAC: 63% vs placebo: 59%)
- Serious adverse events and long term outcomes at one year were not reported, although the trial reported that they were collected
- Patients who received liver transplants could have confounded survival results

Pharmacist/RN Assessment Question #3:

- What were the findings of Lee et al trial that supports the use of NAC in nonacetaminophen induced acute liver failure?
 - A. Improved mortality
 - B. Improved transplant free survival
 - C. Decreased hospital length of stay
 - D. Increased hospital length of stay

Pharmacist/RN Question #3: Correct Response

- What were the findings of Lee et al trial that supports the use of NAC in nonacetaminophen induced acute liver failure?
 - A. Improved mortality
 - **B.** Improved transplant free survival
 - C. Decreased hospital length of stay
 - D. Increased hospital length of stay

Nabi T, et al. Gastroenterol. 2017;23(3):169-175.

Study Design

Prospective, randomized case control trial

Population

- Adults, evidence of ALF (encephalopathy and INR ≥1.5, onset <8 weeks)
- Excluded patients with acetaminophen overdose, shock liver, previously received NAC, acute on chronic liver failure
- Viral hepatitis (n=30), DILI (n =15), undetermined (n=30), others (n=5)

Intervention

- NAC: 150 mg/kg/h for 1 h \rightarrow 12.5 mg/kg/h for 4 h \rightarrow 6.25 mg/kg for 67 h
- Placebo: dextrose 5%

Outcomes

- Hospital length of stay
- Overall survival

Baseline Characteristics	NAC (n=40)	Placebo (n=40)	P value
Hepatic Encephalopathy			
Grade I	10 (25)	21 (53)	0.054
Grade II	13 (33)	8 (20)	
Grade III	7 (18)	7 (18)	
Grade IV	10 (25)	4 (10)	
Age, years	31 <u>+</u> 12	38 <u>+</u> 20	0.035
INR	2.9 <u>+</u> 1.2	2.5 <u>+</u> 0.8	0.114
Bilirubin, mg/dL	21 <u>+</u> 9	21 <u>+</u> 10	0.827
AST, mg/dL	1,726 <u>+</u> 983	1,462 <u>+</u> 679	0.166
ALT, mg/dL	1,051 <u>+</u> 717	1,056 <u>+</u> 569	0.972
Jaundice to encephalopathy, days	22 <u>+</u> 11	28 <u>+</u> 18	0.081
MELD	32 <u>+</u> 7	30 <u>+</u> 5	0.313

Results presented as n,% or average + SD

Outcome	NAC (n=40)	Placebo (n=40)	P value
Hospital length of stay, days	8 <u>+</u> 2	11 <u>+</u> 3	0.002
Overall survival	29 (72.5)	19 (47.5)	0.025

Results presented as n (%) or average + SD

- Patients in the control group had higher incidence of seizures (p=0.156) and significantly more mannitol administration (p=0.037) when compared to NAC
- Subgroup analysis of ALF etiology found significant improved in survival in the DILI group (p=0.049) when compared to other etiologies

Conclusion

- NAC is useful and has advantages in the treatment of non-APAP induced acute liver injury with improved hospital admission duration and improved survival during admission
 - Improved outcomes primarily seen in the DILI subgroup

Interpretation

- This trial further supported the use of NAC in non-APAP induced acute liver injury
- Showed significant results in reduced hospital stay along with improved survival
- ALF definition and etiologies consistent with Lee trial
- Lee et al. found improved transplant-free survival primarily in the viral hepatitis and DILI subgroups
 - This trial only found significant reductions in the DILI subgroup

Darweesh et al. Clin Drug Investig. 2017;37(5):473-482.

Study Design

Prospective, multicenter, observational study

Population

- Adults with ALF (jaundice (bilirubin >25 mmol/L) and coagulopathy (INR >1.5)
 with or without encephalopathy
- Excluded clinical or historical evidence of acetaminophen overdose or prior liver disease

Intervention

- NAC: 150 mg/kg IV over 0.5 h → 70 mg/kg IV over 4 h → 70 mg/kg IV over 16 h
 → 600mg/day PO NAC 2-3 days prior to discharge
- Placebo

Outcomes

- **Primary:** reduction in mortality or liver transplantation
- **Secondary:** length of hospital stay, ICU admission, hepatic encephalopathy incidence, safety profile

Baseline Characteristic	NAC (n=85)	Placebo (n=70)	P value
Age, years	33.5 <u>+</u> 11	34.8 <u>+</u> 9	n/a
INR	2.4 <u>+</u> 0.5	2.3 <u>+</u> 0.5	0.283
AST, IU/L	3951 <u>+</u> 1630	3956 <u>+</u> 1386	0.990
ALT, IU/L	3144 <u>+</u> 1748	2993 <u>+</u> 1295	0.706
Bili, mg/dL	1.0 <u>+</u> 0.5	1.1 <u>+</u> 0.4	0.314
Encephalopathy grade			0.7
0	61 (72)	45 (64)	
1-11	20 (24)	19 (27)	
III-IV	4 (5)	6 (9)	

Results presented as n,% or average + SD

Outcome	NAC (n=85)	Placebo (n=70)	P value	
	Primary Outcome			
Recovered	82 (96)	17 (23)	< 0.01	
Died	1	16		
Liver transplant	2	37		
	Secondary Outcomes			
Hospital stay, days	10 <u>+</u> 4	28 <u>+</u> 5	<0.001	
ICU admission	28 (33)	47 (67)	0.01	
Bleeding	20 (23)	47 (67)	0.002	
Encephalopathy	28 (33)	44 (63)	0.02	

Results presented as n,% or average + SD

LFT	NAC (n=85)	Placebo (n=70)	P value
Bili, mg/dL(before)	1.0 <u>+</u> 0.5	1.1 <u>+</u> 0.4	0.314
Bili, mg/dL (after)	0.9 <u>+</u> 0.4	1.3 <u>+</u> 0.6	0.02
ALT, IU/L (before)	3144 <u>+</u> 1748	2993 <u>+</u> 1295	0.706
ALT, IU/L (after	1931 <u>+</u> 1286	2113 <u>+</u> 1106	0.558
AST IU/L (before)	3951 <u>+</u> 1630	3956 <u>+</u> 1386	0.990
AST IU/L (after)	1155 <u>+</u> 539	2850 <u>+</u> 1321	<0.001
INR (before)	2.4 <u>+</u> 0.5	2.3 <u>+</u> 0.5	0.283
INR (after)	2.0 <u>+</u> 1.0	3.0 <u>+</u> 1.1	<0.001

Results presented as average <u>+</u> SD

Before = before NAC administration, after = after NAC administration

Conclusion

 NAC can improve mortality and reduce the need of liver transplant in patients with non-acetaminophen induced acute liver failure

Interpretation

- Definition of ALF inconsistent with similar studies
 - Less severe ALF when compared to similar studies
 - Majority of patients had grade 0 HE
 - Did not document MELD score
- Collected LFTs pre and post NAC administration to observe the effect on levels
- Included oral NAC dosing prior to discharge
- Mortality benefit has not been replicated in other studies

Amjad et al Prz Gastroenterol. 2022;17(1):9-16

Study Design

Systemic review and meta-analysis

Population

- Adult patients with non-acetaminophen ALF who received NAC
- Excluded patients with underlying chronic disease
- Viral hepatitis (46% vs. 33%), DILI (25% vs. 28%), indeterminate cause, autoimmune hepatitis

Intervention

- NAC: dependent on trial protocol
- Placebo

Outcomes

- Primary: overall mortality
- Secondary: transplant-free survival, safety, hospital length of stay

The overall survival was 70.1% (237/334) in the NAC group and 59.8% (202/338) in the control group (RR = 0.73; 95% CI: 0.48–1.09)

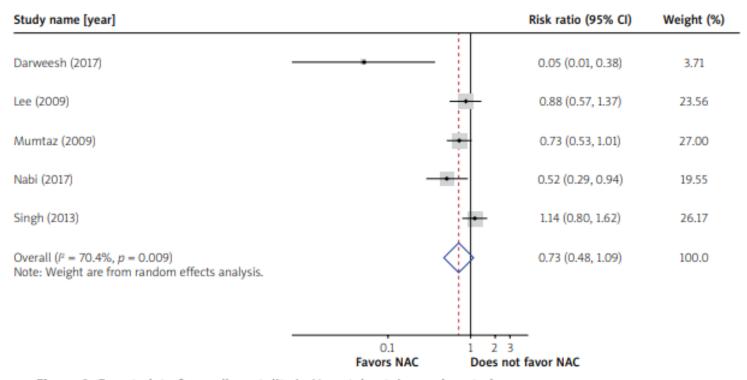


Figure 2. Forest plot of overall mortality in N-acetylcysteine and control group

The transplant-free survival was improved by 44% in the NAC group (RR = 0.56; 95% CI: 0.33–0.94)

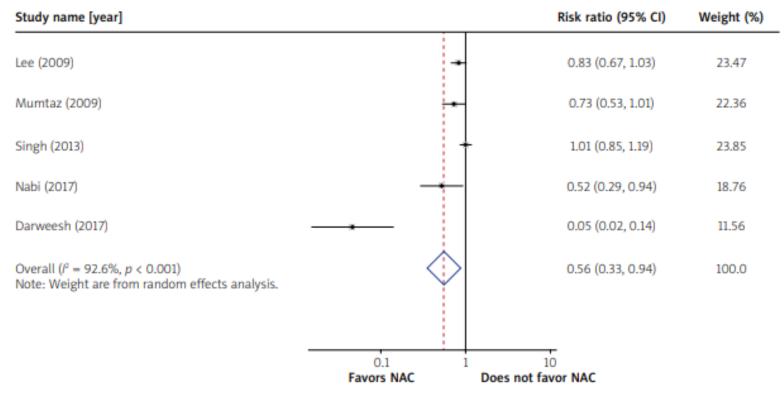


Figure 3. Forest plot of transplant-free survival in N-acetylcysteine and control group

Hospital Length of Stay

- NAC significantly reduced the duration of hospital stay by ~1.6 days
 - SMD -1.62; 95% CI (-1.84 to -1.4); p < 0.001

SMD: standard difference in means

Safety

- Most common adverse events in the NAC group were nausea, vomiting, dyspepsia, fever, rash, infections, arrhythmias and rarely bronchospasms
- No statistically significant difference when compared to the control group

Conclusion

 N-acetylcysteine improved transplant-free survival and hospital length of stay with no significant differences observed in mortality rates

Interpretation

- Meta-analysis confirmed the improved transplant-free survival and hospital length of stay with NAC in non-APAP induced ALF
- More studies are needed to determine NAC benefit on mortality due to conflicting data

NAC Evidence in Shock Liver

Case Report	Initial Labs	Management	Result
79 y/o M with acute liver failure secondary to severe sepsis	APAP: < 5 mg/dL AST: 1216 IU/L ALT: 736 IU/L INR: 1.93 Lactate 9.4 mmol/L	NAC	Peak LFTs > 5000 IU, improved over 72 h; did not require vasopressors
32 y/o M with history of pericarditis; ingested 32.4 mg colchicine	Colchicine: 9.6 ng/mL AST: 286 IU/L ALT: 58 IU/L INR: .331 Lactate 7.1 mmol/L	NAC Activated charcoal Bicarbonate infusion Vasopressors Hemodialysis	Peak LFTs > 2000 IU, normalized on day 7; patient expired due to worsening metabolic acidosis and progressive pancytopenia

- Minimal clinical evidence limited randomized controlled trials
- Outcomes primarily evaluating surrogate outcomes

Conclusions

- Improved transplant-free survival has been demonstrated in literature with the use of NAC in non-acetaminophen induced ALF
 - Benefits primarily seen in viral hepatitis and drug-induced ALF and if administered with HE
 Grade I or II prior to progression to Grade III-IV
 - Limited evidence in shock liver
- Volume content in NAC should be considered prior to initiation of NAC on a patient-specific evaluation
 - o 3 bag method of NAC (without extension) in adults results in 1700 ml of fluid being administered

Technician Assessment Question #3:

- How much fluid is required for the traditional 3 bag method of NAC to be administered to a patient without extension of therapy?
 - A. 1000 mL
 - B. 1250 mL
 - C. 1700 mL
 - D. 2000 mL

Technician Assessment Question #3: Correct Response

- How much fluid is required for the traditional 3 bag method of NAC to be administered to a patient without extension of therapy?
 - A. 1000 mL
 - B. 1250 mL
 - C. 1700 mL
 - D. 2000 mL

Conclusions

Benefits Seen	Consider Risks vs Benefits
Viral hepatitis induced ALF	Shock liver
Non-acetaminophen DILI	Volume overload
Acetaminophen-induced ALF	High aspiration risk
ALF with HE Grade 1-2	Indeterminate

- The use of NAC can be considered in other indications based on risk vs. benefit
- IV NAC is relatively inexpensive and has a favorable safety profile
 - Supplied as 200 mg/mL vials ~\$1.00/mL
 - Ex: 60 kg patient requiring full therapeutic dosing utilizing traditional 3 bag method: < \$100

References

- Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol. 2017;27(21):R1147-R1151. doi:10.1016/j.cub.2017.09.019
- European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu; Clinical practice guidelines panel, Wendon, J, et al. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. *J Hepatol.* 2017;66(5):1047-1081. doi:10.1016/j.jhep.2016.12.003
- Shingina A, Mukhtar N, Wakim-Fleming J, et al. Acute Liver Failure Guidelines. Am J Gastroenterol. 2023;118(7):1128-1153. doi:10.14309/ajg.0000000000002340
- Trey C, Davidson CS. The management of fulminant hepatic failure. *Prog Liver Dis.* 1970;3:282-298.
- Bernal W, Wendon J. Acute liver failure. N Engl J Med. 2013;369(26):2525-2534. doi:10.1056/NEJMra1208937
- Stravitz RT, Lee WM. Acute liver failure. *Lancet*. 2019;394(10201):869-881. doi:10.1016/S0140-6736(19)31894-X
- Lee WM, Stravitz RT, Larson AM. Introduction to the revised American Association for the Study of Liver Diseases Position Paper on acute liver failure 2011. *Hepatology*. 2012;55(3):965-967. doi:10.1002/hep.25551
- Martínez-Martínez LM, Rosales-Sotomayor G, Jasso-Baltazar EA, et al. Acute liver failure: Management update and prognosis. *Rev Gastroenterol Mex (Engl Ed)*. 2024;89(3):404-417. doi:10.1016/j.rgmxen.2024.05.002
- O'Grady JG, Schalm SW, Williams R. Acute liver failure: redefining the syndromes [published correction appears in Lancet 1993 Oct 16;342(8877):1000]. *Lancet.* 1993;342(8866):273-275. doi:10.1016/0140-6736(93)91818-7
- Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, ter Borg PC. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. *Hepatology*. 2000;31(4):864-871. doi:10.1053/he.2000.5852
- Jamil Z, Perveen S, Khalid S, et al. Child-Pugh Score, MELD Score and Glasgow Blatchford Score to Predict the In-Hospital Outcome of Portal Hypertensive Patients Presenting with Upper Gastrointestinal Bleeding: An Experience from Tertiary Healthcare System. *J Clin Med.* 2022;11(22):6654. Published 2022 Nov 9. doi:10.3390/jcm11226654
- Ostapowicz G, Fontana RJ, Schiødt FV, et al. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. *Ann Intern Med.* 2002;137(12):947-954. doi:10.7326/0003-4819-137-12-200212170-00007
- Jóźwiak-Bebenista M, Nowak JZ. Paracetamol: mechanism of action, applications and safety concern. *Acta Pol Pharm*. 2014;71(1):11-23.
- Moyer AM, Fridley BL, Jenkins GD, et al. Acetaminophen-NAPQI hepatotoxicity: a cell line model system genome-wide association study. *Toxicol Sci.* 2011;120(1):33-41. doi:10.1093/toxsci/kfq375
- Saccomano SJ. Acute acetaminophen toxicity in adults. *Nurse Pract*. 2019;44(11):42-47. doi:10.1097/01.NPR.0000586020.15798.c6

References

- Ohashi N, Kohno T. Analgesic Effect of Acetaminophen: A Review of Known and Novel Mechanisms of Action. *Front Pharmacol.* 2020;11:580289. Published 2020 Nov 30. doi:10.3389/fphar.2020.580289
- Acetaminophen. Lexi-Drugs. UpToDate Lexidrug. UpToDate Inc. https://online.lexi.com. Accessed February 2, 2025.
- Link SL, Rampon G, Osmon S, Scalzo AJ, Rumack BH. Fomepizole as an adjunct in acetylcysteine treated acetaminophen overdose patients: a case series [published correction appears in Clin Toxicol (Phila). 2022 May;60(5):549. doi: 10.1080/15563650.2021.2007599.]. Clin Toxicol (Phila). 2022;60(4):472-477. doi:10.1080/15563650.2021.1996591
- Shah KR, Beuhler MC. Fomepizole as an Adjunctive Treatment in Severe Acetaminophen Toxicity. Am J Emerg Med. 2020;38(2):410.e5-410.e6. doi:10.1016/j.ajem.2019.09.005
- Chertoff J. N-Acetylcysteine's Role in Sepsis and Potential Benefit in Patients With Microcirculatory Derangements. J Intensive Care Med. 2018;33(2):87-96.
 doi:10.1177/0885066617696850
- Lee WM, Hynan LS, Rossaro L, et al. Intravenous N-acetylcysteine improves transplant-free survival in early stage non-acetaminophen acute liver failure [published correction appears in Gastroenterology. 2013 Sep;145(3):695. Dosage error in article text]. *Gastroenterology*. 2009;137(3):856-864.e1. doi:10.1053/j.gastro.2009.06.006
- Nabi T, Nabi S, Rafiq N, Shah A. Role of N-acetylcysteine treatment in non-acetaminophen-induced acute liver failure: A prospective study. *Saudi J Gastroenterol.* 2017;23(3):169-175. doi:10.4103/1319-3767.207711
- Darweesh SK, Ibrahim MF, El-Tahawy MA. Effect of N-Acetylcysteine on Mortality and Liver Transplantation Rate in Non-Acetaminophen-Induced Acute Liver Failure: A Multicenter Study. *Clin Drug Investig.* 2017;37(5):473-482. doi:10.1007/s40261-017-0505-4
- Amjad W, Thuluvath P, Mansoor M, Dutta A, Ali F, Qureshi W. N-acetylcysteine in non-acetaminophen-induced acute liver failure: a systematic review and meta-analysis of prospective studies. *Prz Gastroenterol.* 2022;17(1):9-16. doi:10.5114/pg.2021.107797
- Parvataneni S, Vemuri-Reddy S. N-acetyl Cysteine Use in the Treatment of Shock Liver. Cureus. 2020;12(2):e7149. Published 2020 Feb 29. doi:10.7759/cureus.7149
- Cozza J, Do TVC, Ganti S, Depa J. The Ugly Side of Colchicine. Journal of Investigative Medicine High Impact Case Reports. 2021;9. doi:10.1177/23247096211029744
- N-acetylcysteine. Lexi-Drugs. UpToDate Lexidrug. UpToDate Inc. Accessed April 25, 2025.

Thank You!!!

- Kayla Dodson, PharmD, PGY1 Pharmacy Resident, TriStar Centennial Medical Center
- Kayla.Dodson@hcahealthcare.com
- Tristan Jernigan, PharmD, PGY1 Pharmacy Resident, TriStar Centennial Medical Center
- Tristan.Jernigan@hcahealthcare.com

