Procalcitonin or No Calcitonin in the Guidance of Antimicrobial Therapy

A presentation for HealthTrust Members March 5, 2025

Gresham Hindman, PharmD PGY1 Pharmacy Resident McLeod Regional Medical Center Florence, SC Preceptors: Kelly Gamble, PharmD, BCIDP and Lauren Freeman, PharmD, BCIDP Clinical Pharmacy Specialists, Infectious Diseases McLeod Regional Medical Center Florence, SC

Disclosure Statement

McLeod Health

- Neither the speaker nor her preceptors have relevant financial relationships with ineligible companies to disclose.
- This program may contain the mention of suppliers, brands, products, services, or drugs presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes and should not be perceived as an endorsement of any supplier, brand, product, service or drug.
- The content presented is for informational purposes only & is based upon the presenter(s) knowledge & opinion. It should not be relied upon without independent consultation with & verification by appropriate professional advisors. Individuals & organizations shall have sole responsibility for any actions taken in connection with the content herein. HealthTrust, the program presenter(s) & their employers expressly disclaim any & all warranties as to the content as well as any liability resulting from actions or omissions of any individual or organization in reliance upon the content.

Abbreviations

APACHE II- The Acute Physiology and

Chronic Health Evaluation

CAP- community acquired pneumonia

<u>CRP-</u> C reactive protein

DNR- do not resuscitate

ESR- erythrocyte sedimentation rate

HAP- hospital acquired pneumonia

ICU- intensive care unit

IL- interleukin

INF- interferon

IV- intravenous

<u>LRTI-</u> lower respiratory tract infection

MICU- medical ICU

<u>mL-</u> milliliters

<u>ng-</u> nanograms

<u>PCT-</u> procalcitonin <u>RBC-</u> red blood cell <u>RCT-</u> randomized controlled trial SAPS II- Simplified Acute Physiology

Score

<u>SIRS-</u> Systemic inflammatory response syndrome

<u>SOC-</u> standard of care

<u>SOFA-</u> Sequential Organ Failure

Assessment

TNF- tumor necrosis factor

UK- United Kingdom

VAP- ventilator associated pneumonia

Learning Objectives

- Recall the advantages of procalcitonin as a diagnostic biomarker in bacterial infections
- Recognize how procalcitonin levels can be used as negative predictive values
- Identify clinical situations in which procalcitonin could be falsely elevated in bacterial infections

What is Procalcitonin

McLeod Health

- Peptide precursor of the hormone calcitonin
- Levels
 - Under normal physiologic conditions concentrations are undetectable
 - Systemic inflammation → production of PCT activated in cell types that are unable to process PCT into calcitonin → accumulation of PCT

Pathophysiology

Bacterial infection \rightarrow cytokine mediated: IL-1 β , TNF- α , and IL-6 \rightarrow activate PCT production

Sources: Allison B Chambliss, et al. *The Journal of Applied Laboratory Medicine*. 2023;8(3):598–634. Lee H. *Korean J Intern Med*. 2013;28(3):285-291. *J Appl Lab Med*, Volume 8, Issue 3, May 2023, Pages 598–634

Pathophysiology

Viral infection \rightarrow INF- γ secreted \rightarrow counter regulates PCT expression

Sources: Allison B Chambliss, et al. *The Journal of Applied Laboratory Medicine*. 2023;8(3):598–634. Lee H. *Korean J Intern Med*. 2013;28(3):285-291. *J Appl Lab Med*, Volume 8, Issue 3, May 2023, Pages 598–634

Procalcitonin Levels

McLeod Health

- PCT increases within hours of the inflammatory insult
 - Peaks at ~ 12 hours
 - Half-life of ~ 24 hours
- Normal: ≤ 0.25 µg/L
- Possible infection: > 0.25 µg/L
- The extent of the initial and peak PCT level correlates with disease severity
- Decreasing concentrations indicate disease resolution
- PCT is a small protein eliminated primarily by the kidneys

Source: Allison B Chambliss, et al. The Journal of Applied Laboratory Medicine. 2023;8(3):598–634.

Other Biomarkers: CRP

McLeod Health

CRP is an acute phase reactant produced by the liver

- Upregulated in response to inflammation
- Longer half-life than PCT
 - Antibiotic monitoring is limited
- Less expensive than PCT
- Nonspecific for bacterial infection
- Typically used to identify inflammation

Sources: Allison B Chambliss, et al. *The Journal of Applied Laboratory Medicine*. 2023;8(3):598–634. *J Appl Lab Med*, Volume 8, Issue 3, May 2023, Pages 598–634

Other Biomarkers: IL-6

McLeod Health

IL-6 is a proinflammatory cytokine

- Upregulated in response to inflammation
- Short half-life
- Correlates with the extent of the tissue damage
- Nonspecific to infection
- Typically used to assess severity of acute inflammation

Other Biomarkers: IL-10

IL-10 is an anti-inflammatory cytokine

- Upregulated in response to inflammation
- Blocks the production of cytokines by immune cells to reduce inflammation
- Less specific for infectious causes

 Rising in autoimmune disease
- Typically used for immune regulation and chronic inflammatory conditions

Sources: Moore KW, et al. Annu Rev Immunol. 2001;19:683-765. *J Appl Lab Med*, Volume 8, Issue 3, May 2023, Pages 598–634

Other Biomarkers: TNF- α

McLeod Health

TNF- α is a cytokine that initiates the cytokine cascade

- Upregulated in response to inflammation
- Shorter half-life than PCT
- Nonspecific for bacterial infection
- Typically used to identify immune regulatory response and active inflammation

Other Biomarkers: ESR

ESR is an indirect measure of acute phase reactants

- The rate at which RBCs settle in a tube, affected by the constituents of the patient's serum
- The main acute phase reactant is fibrinogen, but concentrations of others contribute
- Nonspecific to bacterial infections
- Typically used in acute or chronic inflammation

Source: Gauger J. Emergency Medicine Tamed. https://www.tamingthesru.com/blog/2016/10/2/esr-crp-procalcitonin-acute-inflammatory-markers-in-the-ed.

Biomarker Summary

McLeod Health

Biomarker	Use	Specific Indications	Comparison to PCT
CRP	Identify inflammation	Sepsis, pneumonia, UTI, arthritis, lupus, inflammatory bowel disease, post operative infection	Longer half life
IL-6	Severity of acute inflammation	Sepsis, pneumonia, meningitis, bacteremia, arthritis, lupus, trauma, or surgery	Shorter half life
IL-10	Immune regulation and chronic inflammatory conditions	HIV, hepatitis, arthritis, lupus, inflammatory bowel disease, ulcerative colitis, or Crohn's	Shorter half life
TNF-α	Immune regulatory response and active inflammation	Sepsis, systemic bacterial infections, tuberculosis, and bacterial pneumonia, HIV, hepatitis, arthritis, lupus, Crohn's, psoriasis, cancer	Shorter half life
ESR	Acute or chronic inflammation	Osteomyelitis, tuberculosis, endocarditis, hepatitis, mononucleosis, chronic infections, or autoimmune disorders	Longer half life

Nonbacterial Causes of Elevated Procalcitonin

Stress response	Cardiogenic shock	Compromised renal function	Neonates after birth
Malaria and some fungal infections	Acute graft- versus-host disease	Immunotherapy	Autoimmune diseases

McLeod Health

Vasculitis and paraneoplastic disease

Sources: Allison B Chambliss, et al. *The Journal of Applied Laboratory Medicine*. 2023;8(3):598–634. Lee H. *Korean J Intern Med*. 2013;28(3):285-291.

Guidelines for Procalcitonin Use

McLeod Health

Disease State	Recommendation	Guidelines
Sepsis	Antibiotic de-escalation Bacterial vs viral cause	2021 Surviving Sepsis Campaign Guidelines 2022 Guidelines for the Use of Procalcitonin for Rational Use of Antibiotics
CAP, HAP, and VAP	Antibiotic de-escalation Bacterial vs viral cause	 2019 Guidelines for Diagnosis and Management of Community and Hospital Acquired Pneumonia 2015 Guidelines for Management of Community Acquired Pneumonia 2016 Management of Adults With Hospital Acquired and Ventilator Associated Pneumonia
Neutropenic Infections	Bacterial vs viral cause	2018 Guidelines for the Management of Sepsis in Neutropenic Cancer Patients
Rhinosinusitis	Bacterial vs viral cause	2018 Guideline for Rhinosinusitis
COPD	Need for antibiotics	2018 Guideline for the Diagnosis and Treatment of COPD Patients

PRO-calcitonin Evidence

Use of Procalcitonin to Reduce Patients' Exposure to Antibiotics in Intensive Care Units (PRORATA trial)

Bouadma L, Luyt C-E, Tubach F, Cracco C, Alvarez A, Schwebel C, *et al.* Lancet Lond Engl. 2010;375: 463-74.

PRORATA Study Design

McLeod Health

Multicenter, prospective, parallel-group, open-label trial

France

June 2007 to May 2008

Randomized into 2 groups in 1:1

PRORATA Methods

PRORATA Inclusion Criteria

McLeod Health

- Suspected bacterial infections
- > 18 years old
- Patients who developed sepsis during their stay in the ICU
- Received antibiotics prior to admission
- ICU < 3 days
- Bone-marrow transplant or chemotherapy induced neutropenia
- Long-term antibiotic treatment
- SAPS II score > 65 points at screening
- DNR orders

Exclusion criteria

Inclusion Criteria

PRORATA Outcomes

McLeod Health

Primary endpoints:

- Death from any cause by days 28 and 60
- Number of days without antibiotics at 28 days

Secondary outcome measures:

- Percentage of patients with relapse or superinfection
- Number of days without mechanical ventilation
- Length of stay in the ICU and hospital

PRORATA Baseline Characteristics

McLeod Health

	PCT Group (n= 307)	SOC Group (n=314)
Age: mean (SD)	61 (15.2)	62.1 (15.0)
SOFA Score: mean (SD)	7.5 (4.4)	7.2 (4.4)
Pulmonary Infection: n (%)	183 (71%)	211 (74%)
Mechanical Ventilation: n (%)	211 (69%)	208 (66%)
Septic Shock: n (%)	138 (45%)	129 (41%)
Positive Blood Cultures: n (%)	55 (18%)	53 (17%)

PRORATA Results

McLeod Health

	PCT Group (n= 307)	SOC Group (n=314)	P Value
28 day mortality: n (%)	65 (21.2%)	64 (20.4%)	-
60 day mortality: n (%)	92 (30%)	82 (26.1%)	-
Number of days without antibiotics: mean (SD)	14.3 (9.1)	11.6 (8.2)	<0.0001
Number of days without mechanical ventilation: mean (SD)	16.2 (11.1)	16.9 (10.9)	0.47
Length of stay in ICU: mean (SD)	15.9 (16.1)	14.4 (14.1)	0.23
Length of stay in hospital: mean (SD)	26.1 (19.3)	26.4 (18.3)	0.87
Days of antibiotic exposure per 1000 days	653	812	<0.0001

PRORATA Results

Absolute difference in the % of patients receiving antibiotics:

- Day 1: 5.6%
- Day 5: 22.2%
- Day 7: 37.6%
- Day 15: 10.5%
- Day 20: 6.2%

PRORATA Results

McLeod Health

Duration of First Episode Antibiotic Treatment	PCT Group (n= 307)	SOC Group (n=314)	P Value
Overall population	307 (100%); 6.1 (6.0)	314 (100%); 9.9 (7.1)	<0.0001
Community acquired pneumonia	79 (26%); 5.5 (4.0)	101 (32%); 10.5 (6.4)	<0.0001
Ventilator associated pneumonia	75 (24%); 7.3 (5.3)	66 (21%); 9.4 (5.7)	0.0210
Urinary tract infection	24 (8%); 7.4 (6.3)	18 (6%); 14.5 (9.3)	0.0053
Infection with positive blood cultures	55 (18%); 9.8 (7.7)	53 (17%); 12.8 (8.1)	0.06
number of patients (%); days (SD)			

PRORATA Take Away

McLeod Health

Author's Conclusions

 In septic ICU patients a PCT guided treatment algorithm is beneficial for discontinuation strategies

Evaluation

- Specific benefit seen in pneumonia groups
- Most reduction seen at around 5-7 days
- Study design and size
- Open label design
- Final decision was at physician digression
- Limited surgical population

Efficacy and Safety of Procalcitonin Guidance in Reducing the Duration of Antibiotic Treatment in Critically III Patients

de Jong E, van Oers JA, Beishuizen A, *et al. Lancet Infect Dis.* 2016;16(7):819-827

de Jong Study Design and Methods

McLeod Health

The Stop Antibiotics on Procalcitonin Guidance Study (SAPS)

Prospective, multicenter, randomized, controlled, open-label intervention trial

15 hospitals in the Netherlands

Sept 18, 2009 through July 1, 2013

de Jong Methods

McLeod Health

Daily lab draws

PCT group

Followed guideline recommendations

Continue antibiotics: PCT > 0.5 µg/L or decreased by < 80% of peak value Discontinue antibiotics: PCT decreased by > 80% of its peak value or to < 0.5 µg/L

de Jong Inclusion Criteria

McLeod Health

de Jong Outcomes

McLeod Health

Primary outcome:

- Antibiotic consumption
 - Daily defined doses
 - Duration of treatment
 - Antibiotic free days

Safety endpoint:

 Mortality at 28 days and 1 year Secondary outcomes:

- Percentage of patients who had a recurrent infection
- Length of stay in hospital and ICU

de Jong Baseline Characteristics

McLeod Health

	PCT Group (n= 761)	SOC Group (n=785)
Age: mean	65	65
SOFA Score: mean	6.0	6.0
Pulmonary Infection: n (%)	491 (65%)	503 (64%)
Mechanical Ventilation: n (%)	617 (81%)	628 (80%)
Septic Shock: n (%)	138 (45%)	129 (41%)
CRP Level (mg/L): mean	202	204
PCT Level (µg/L): mean	1.9	-

de Jong Results

McLeod Health

	PCT Group (n= 307)	SOC Group (n=314)	P Value
Antibiotic Consumption: mean (SD) Duration of treatment Antibiotic free days at 28 days	5.0 (3.0-9.0) 7.0 (0-14.5)	7.0 (4.0-11.0) 5.0 (0-13.0)	<0.0001 0.0016
28 day mortality: n (%)	149 (19.6%)	196 (25.0%)	0.0122
Reinfection: mean (SD)	38 (5.0)	23 (2.9)	0.0492
Length of stay in ICU: mean (SD)	8.5 (5.0-17.0)	9 (4.0-17.0)	0.56
Length of stay in hospital: mean (SD)	22.0 (13.0-39.3)	22.0 (12.0-40.0)	0.77

de Jong Results

de Jong Take Away

Author's Conclusions

 In ICU patients a PCT level of < 0.5 µg/L or level decreased by > 80% of its peak value can be used to facilitate discontinuation of antibiotics

Evaluation

- Mortality decreased
- Study design and size
- Levels around 5-6 days after initiation of antibiotics
- Open label, potential for bias
- Adherence
Biomarker-Guided Antibiotic Duration for Hospitalized Patients With Suspected Sepsis: The ADAPT-Sepsis Randomized Clinical Trial

Dark P, Hossain A, McAuley DF, *et al. JAMA*. Published online December 9, 2024.

ADAPT- Sepsis Study Design and Methods

Multicenter, prospective, blinded, noninferiority, randomized control trial

McLeod Health

Mortality noninferiority margin of 5.4%

January 1, 2018 to June 5, 2024

41 UK National Health Service ICUs

ADAPT- Sepsis Methods

McLeod Health

ADAPT- Sepsis Criteria

McLeod Health

ADAPT- Sepsis Outcomes

McLeod Health

Primary outcome:

- Total duration of antibiotic
- All cause mortality at 28 days

Secondary outcomes:

- Antibiotic duration for initial sepsis period
- Unscheduled escalation care
 or readmission
- Infection relapse or recurrence
- Critical care unit length of stay
- Hospital length of stay
- All cause mortality at 90 days

ADAPT- Sepsis Baseline Characteristics McLeod Health

	PCT Group (n= 918)	SOC Group (n=918)
Age: mean	60.6	59.8
SOFA Score: mean	7.0	7.0
APACHE II: mean	17.5	17.2
Pulmonary Infection: n (%)	437 (48.3%)	451 (49.1%)
Intra-abdominal Infection: n (%)	230 (25.5%)	198 (21.8%)
Urinary Tract Infection: n (%)	124 (13.7%)	118 (21.8%)
Sepsis: n (%)	465 (50.8%)	466 (50.9%)
Septic Shock: n (%)	450 (49.2%)	450 (49.1%)

ADAPT- Sepsis Results

McLeod Health

	PCT Group (n= 918)	SOC Group (n=918)	P Value
Total antibiotic duration to 28 days: mean (SD) Intention to treat Per protocol	9.8 (7.2) 9.8 (7.2)	10.7 (7.6) 10.7 (7.6)	0.01 0.02
28 day mortality: n (%) Intention to treat Per protocol	184/879 (20.9%) 176/860 (20.5%)	170/878 (19.4%) 166/864 (19.2%)	0.02 0.02
Length of stay in ICU: mean (SD)	6.2 (3.1-12.3)	5.8 (3.0-12.4)	-
Length of stay in hospital: mean (SD)	12.6 (6.8)	12.7 (6.8)	-
Infection relapse requiring further antibiotics	15	5	-

ADAPT- Sepsis Results

A Probability of total antibiotic duration (primary effectiveness outcome)

B All-cause mortality up to 28 days (safety outcome)

ADAPT- Sepsis Take Away

McLeod Health

Author's Conclusions

• In septic ICU patients a PCT guided discontinuation protocol can be used to safely facilitate discontinuation of antibiotics

Evaluation

- Study design and size
- Mortality- no difference
- Blinding
- Reduction was modest

NO-calcitonin Evidence

Procalcitonin-guided Interventions Against Infections to Increase Early Appropriate Antibiotics and Improve Survival in the Intensive Care Unit

Jensen JU, Hein L, Lundgren B, *et al. Crit Care Med.* 2011;39(9):2048-2058.

PASS Study Design and Methods

McLeod Health

Procalcitonin And Survival Study (PASS)

Randomized, controlled, open-label trial

September 1, 2006 to February 6, 2009

9 medical and surgical ICUs across Denmark

PASS Methods

Daily labs

- Alert PCT > 1.0 µg/L or not decreasing by >10% from the previous day
- Goal of the alert PCT is to broaden antibiotics or increase diagnostic efforts

PASS Outcomes

McLeod Health

Primary outcomes:

• 28 day survival

Secondary outcomes:

- Mechanical ventilation
- Median ICU length of stay
- Time to administration of appropriate antimicrobials

PASS Baseline Characteristics

McLeod Health

	PCT Group (n= 604)	SOC Group (n=596)
Age: mean	67	67
APACHE II Score: mean	18	18
Surgical Patients: n (%)	227 (37.6%)	260 (43.6%)
Respiratory Failure: n (%)	410 (67.9%)	422 (70.8%)
Mechanical Ventilation: n (%)	401 (66.4%)	401 (67.3%)
Sepsis/ Septic Shock: n (%)	247 (35.6%)	212 (40.9%)
Alert Procalcitonin: n (%)	312 (51.7%)	279 (47.0%)
C reactive protein (mg/L): mean	161	152

PASS Results

McLeod Health

	PCT Group (n= 604)	SOC Group (n=596)	P Value
Time to administration of appropriate antibiotics: days	-0.1	0.8	0.02
ICU days with mechanical ventilation: n (%)	3569 (65.5%)	2861 (60.7%)	<0.0001
ICU length of stay: days	6	4	0.004
60 day mortality: n (%)	220 (36.9%)	231 (38.2%)	-

PASS Take Away

McLeod Health

Author's Conclusions

 PCT should NOT be used as a daily measure to broaden antibiotics or increase diagnostic efforts

Evaluation

- Study design and size
- Algorithm adherence
- No benefit in survival

- Prolonged length of stay in the ICU
- Longer time with mechanical ventilation

Procalcitonin-Guided Use of Antibiotics for Lower Respiratory Tract Infection

Huang DT, Yealy DM, Filbin MR, *et al. N Engl J Med.* 2018;379(3):236-249.

ProACT Study Design and Methods

McLeod Health

Procalcitonin Antibiotic Consensus Trial (ProACT)

Multicenter, randomized, open-label controlled trial

November 2014 to May 2017

14 hospitals in the United States

ProACT Inclusion Criteria

Inclusion Criteria:

- > 18 years old
- Initial diagnosis of acute lower respiratory tract infection

McLeod Health

- Antibiotic prescribing not decided
- Antibiotic need uncertain
- Written consent

ProACT Outcomes

McLeod Health

Primary outcome:

 Total antibiotic exposure Primary safety outcome:

 Composite of adverse outcomes within 30 days after enrollment Secondary outcomes:

- Prescription of antibiotics in the emergency department
- Antibiotic receipt by day 30
- Antibiotic-days during the hospital stay

ProACT Baseline Characteristics

McLeod Health

	PCT Group (n= 822)	SOC Group (n=823)
Age: mean	59.2	53.2
COPD: n (%)	267 (32.5%)	262 (31.8%)
Asthma: n (%)	312 (38.0%)	337 (40.9%)
Symptom Duration: days	5.5	5.5
Procalcitonin Level: n (%) <0.1 μg/L 0.1-0.25 μg/L 0.26-0.5 μg/L >0.5 μg/L	588/808 (72.8%) 158/808 (19.6%) 27/808 (3.3%) 35/808 (4.3%)	648/788 (82.2%) 72/788 (9.1%) 23/788 (2.9%) 45/788 (5.7%)
Final Diagnosis: n (%) Asthma COPD Bronchitis CAP	310 (37.7%) 265 (32.2%) 208 (25.3%) 167 (20.3%)	336 (40.8%) 259 (31.5%) 190 (23.1%) 161 (19.6%)

ProACT Results

	PCT Group (n= 826)	SOC Group (n= 830)	95% CI
Antibiotic days by day 30	4.2	4.3	-0.05 (-0.6-0.5)
Received any antibiotics by day 30: n (%)	471 (57%)	513 (61.8%)	-4.8 (-12.7-3.0)
Antibiotic prescription in ED: n (%)	282 (34.1%)	321 (38.7%)	-4.6 (-12.2-3.0)
Antibiotic-days during hospital stay	2.6	2.7	-0.1 (-0.8-0.6)
Hospital length of stay: days	5.0	4.7	0.3 (-0.2-0.9)

ProACT Take Away

Author's Conclusions

 PCT guided antibiotic prescription guidelines do not reduce the exposure to antibiotics in those presenting with LRTI

Evaluation

- Study design and size
- Patients with uncertain benefit from antibiotics
- Average symptoms per patient is 5 days
- PCT results were provided to the clinical team before decision making in most but not all instances
- Clinician guided

Ineffectiveness of Procalcitonin-guided Antibiotic Therapy In Severely Critically III Patients: A Meta-analysis

Peng F, Chang W, Xie JF, Sun Q, Qiu HB, Yang Y. Int J Infect Dis. 2019;85:158-166

Peng Study Design and Methods

McLeod Health

Meta analysis

A total of 16 RCTs (6452 participants)

January 2004 and August 2018

Source: Peng F, et al. Int J Infect Dis. 2019;85:158-166

Peng Criteria

McLeod Health

Inclusion Criteria:

- PCT-guided antibiotic therapy compared with SOC
- Critically ill adult patients
- Data reported for mortality
- LOS
- Duration of antibiotic use
- Randomized controlled study design

Exclusion criteria:

- Did not use PCT to guide
 antibiotic clinical decision-making
- Non RCTs
- Trials performed before 2004

Peng Outcomes

McLeod Health

Primary outcome:

• All cause mortality within 28 days

Secondary outcomes:

- Duration of antibiotics
- Hospital LOS
- ICU LOS

Peng Study Selection

First Author	Diagnosis	Cohort	PCT algorithm	Antibiotic Duration
Annane, et al.	Suspected sepsis	31 each	Mixed- 0.25 µg/L	5 each
Bloos, et al.	Severe sepsis or septic shock	552 PCT 537 SOC	Cessation- < 0.1 µg/L or drop by > 50%	7 each
Bouadma, et al.	Suspected bacterial infection	307 PCT 314 SOC	Mixed- < 0.5 μ g/L or drop by > 80%	10.3 PCT 13.3 SOC
Daubin, et al	Severe acute exacerbations of COPD	151 each	Mixed- < 0.1 μ g/L or drop by > 90%	7.9 PCT 7.7 SOC
De Jong, et al.	Assumed or proven infection	761 PCT 785 SOC	Cessation- < 0.5 μg/L or drop by > 80%	5 PCT 7 SOC
Deliberato, et al.	Suspected sepsis, severe sepsis, or septic shock	42 PCT 39 SOC	Cessation- < 0.5 μg/L or drop by > 90%	10 PCT 11 SOC

Peng Study Selection

First Author	Diagnosis Cohort		PCT algorithm	Antibiotic Duration
Hochreiter, et al.	Confirmed or suspected bacterial infections	57 PCT 53 SOC	Cessation- < 1.0 µg/L or drop by > 65%	5.9 PCT 7.9 SOC
Jensen, et al.	n, et al. Critically ill patients 604 PCT 596 SOC Initiation-		Initiation- > 1.0 µg/L	6 PCT 4 SOC
Layios, et al.	Critically ill patients	258 PCT 251 SOC	Initiation- > 0.5 µg/L	-
Najafti, et al.	Critically ill patients with SIRS	151 each	Initiation- > 2.0 µg/L	-
Nobre, et al.	Severe sepsis or septic shock	49 PCT 45 SOC	Cessation- < 0.25 µg/L or drop by > 90%	6.0 PCT 9.5 CRP
Oliveria, et al.	Severe sepsis or septic shock	49 each	Cessation- < 0.1 µg/L or drop by > 90%	8.1 PCT 7.2 CRP

Source: Peng F, et al. Int J Infect Dis. 2019;85:158-166

Peng Study Selection

McLeod Health

First Author	Diagnosis	Cohort	PCT algorithm	Antibiotic Duration
Schroeder, et al.	Severe sepsis	14 PCT 13 SOC	Cessation- < 1.0 μg/L or drop by > 65%	6.6 PCT 8.3 SOC
Shehabi, et al.	Suspected bacterial infection	196 PCT 198 SOC	Cessation- < 0.1 μg/L or drop by > 90%	6 PCT 4 SOC
Stolz, et al.	VAP	51 PCT 50 SOC	Cessation- < 0.25 µg/L or drop by > 80%	10 SOC 15 PCT
Wang, et al.	Acute exacerbations of COPD	95 PCT 96 SOC	Cessation- < 0.1 µg/L	17 PCT 12 SOC

Peng Results: Mortality

	Experim	ental	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.4.1 Initiation							
Jensen 2011	190	604	191	596	22.4%	0.97 [0.76, 1.24]	
Layios 2012	56	258	53	251	7.1%	1.04 [0.68, 1.58]	_
Najafi 2015	5	30	4	30	0.6%	1.30 [0.31, 5.40]	
Subtotal (95% CI)		892		877	30.1%	0.99 [0.81, 1.22]	•
Total events	251		248				
Heterogeneity: Chi ² = 0).20, df = 2	2 (P = 0.9	90); l ² = 0	%			
Test for overall effect: 2	Z = 0.06 (F	P = 0.96)					
1.4.2 Cessation							
Bloos 2016	140	547	149	529	19.1%	0.88 [0.67, 1.15]	
De Jong 2016	149	761	196	785	26.4%	0.73 [0.57, 0.93]	
Deliberato 2013	2	42	4	39	0.7%	0.44 [0.08, 2.54]	· · · · · · · · · · · · · · · · · · ·
Hochreiter 2009	15	57	14	53	1.8%	0.99 [0.43, 2.32]	
Nobre 2008	8	39	8	40	1.1%	1.03 [0.34, 3.09]	
Oliveira 2013	16	49	15	45	1.8%	0.97 [0.41, 2.29]	
Schroeder 2009	3	14	3	13	0.4%	0.91 [0.15, 5.58]	
Shehabi 2014	30	196	26	198	3.7%	1.20 [0.68, 2.11]	
Stolz 2009	8	51	12	50	1.7%	0.59 [0.22, 1.59]	
Wang 2016	2	96	5	95	0.8%	0.38 [0.07, 2.02]	·
Subtotal (95% CI)		1852		1847	57.6%	0.82 [0.70, 0.96]	◆
Total events	373		432				
Heterogeneity: Chi ² = 5	5.04, df = 9) (P = 0.8	B3); I² = 0	%			
Test for overall effect: 2	Z = 2.46 (F	P = 0.01)					
1.4.3 Mixed							
Annane 2013	7	31	10	30	1.3%	0.58 [0.19, 1.81]	· · · · ·
Bouadama 2010	65	307	64	314	8.5%	1.05 [0.71, 1.55]	
Daubin 2018	19	151	17	151	2.5%	1.13 [0.57, 2.28]	
Subtotal (95% CI)		489		495	12.3%	1.02 [0.73, 1.41]	-
Total events	91		91				
Heterogeneity: Chi ² = 1	.04, df = 2	? (P = 0.5	59); l² = 0	%			
Test for overall effect: 2	Z = 0.10 (F	e = 0.92))				
Total (05% CI)		2222		2240	100.0%	0 00 00 00 1 041	
Total (95% CI)	745	3233	774	3219	100.0%	0.90 [0.80, 1.01]	•
Total events	/15	<i>c (</i> D) 0	//1	~~			
Heterogeneity: Chi ² = 8	5.99, df = 1	15(P=0)	.88); I ² =	0%			0.1 0.2 0.5 1 2 5 10
Test for overall effect: A	2 = 1.82 (F	= 0.07)			F) 12 - 67	40/	Favours [experimental] Favours [control]
Test for subaroup diffe	rences: Ch	$11^{*} = 2.74$	1. dt = 2 (P = 0.2	5). I [*] = 27	.1%	

Source: Peng F, et al. Int J Infect Dis. 2019;85:158-166

Figure 2. Forest plot of the effects of PCT-guided antibiotic strategies on short-term mortality.

Peng Results: Mortality

	Experim	ental	Control		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.4.1 Initiation							
Jensen 2011	190	604	191	596	22.4%	0.97 [0.76, 1.24]	
Layios 2012	56	258	53	251	7.1%	1.04 [0.68, 1.58]	_
Najafi 2015	5	30	4	30	0.6%	1.30 [0.31, 5.40]	
Subtotal (95% CI)		892		877	30.1%	0.99 [0.81, 1.22]	•
Total events	251		248				
Heterogeneity: Chi ² = 0).20, df = 2	(P = 0.9	90); l² = 0	%			
Test for overall effect: 2	Z = 0.06 (P	= 0.96)					
Peng Results: Mortality

1.4.2 Cessation									
Bloos 2016	140	547	149	529	19.1%	0.88 [0.67, 1.15]			
De Jong 2016	149	761	196	785	26.4%	0.73 [0.57, 0.93]			
Deliberato 2013	2	42	4	39	0.7%	0.44 [0.08, 2.54]	-		
Hochreiter 2009	15	57	14	53	1.8%	0.99 [0.43, 2.32]			
Nobre 2008	8	39	8	40	1.1%	1.03 [0.34, 3.09]			-
Oliveira 2013	16	49	15	45	1.8%	0.97 [0.41, 2.29]			
Schroeder 2009	3	14	3	13	0.4%	0.91 [0.15, 5.58]		·	
Shehabi 2014	30	196	26	198	3.7%	1.20 [0.68, 2.11]		_ 	
Stolz 2009	8	51	12	50	1.7%	0.59 [0.22, 1.59]			
Wang 2016	2	96	5	95	0.8%	0.38 [0.07, 2.02]			
Subtotal (95% CI)		1852		1847	57.6%	0.82 [0.70, 0.96]		•	
Total events	373		432						
Heterogeneity: Chi ² = 5.	.04, df = 9	(P = 0.83	$ ^{2} = 0$	%					
Test for overall effect: Z	= 2.46 (P	9 = 0.01)							

McLeod Health

Peng Results: Mortality

McLeod Health

1.4.3 Mixed						
Annane 2013	7	31	10	30	1.3%	0.58 [0.19, 1.81]
Bouadama 2010	65	307	64	314	8.5%	1.05 [0.71, 1.55]
Daubin 2018	19	151	17	151	2.5%	1.13 [0.57, 2.28]
Subtotal (95% CI)		489		495	12.3%	1.02 [0.73, 1.41]
Total events	91		91			
Heterogeneity: Chi ² = 1.	04, df = 2	(P = 0.59); ² = 0 ⁴	%		
Test for overall effect: Z	= 0.10 (P	= 0.92)				

Peng Results: Mortality

	Experim	ental	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
1.4.1 Initiation							
Jensen 2011	190	604	191	596	22.4%	0.97 [0.76, 1.24]	
Layios 2012	56	258	53	251	7.1%	1.04 [0.68, 1.58]	
Najafi 2015	5	30	4	30	0.6%	1.30 [0.31, 5.40]	
Subtotal (95% CI)		892		877	30.1%	0.99 [0.81, 1.22]	•
Total events	251		248				
Heterogeneity: Chi ² = 0).20, df = 2	2 (P = 0.9	90); l ² = 0	%			
Test for overall effect: 2	Z = 0.06 (P	P = 0.96)					
1.4.2 Cessation							
Bloos 2016	140	547	149	529	19.1%	0.88 [0.67, 1.15]	
De Jong 2016	149	761	196	785	26.4%	0.73 [0.57, 0.93]	-8-
Deliberato 2013	2	42	4	39	0.7%	0.44 [0.08, 2.54]	
Hochreiter 2009	15	57	14	53	1.8%	0.99 [0.43, 2.32]	
Nobre 2008	8	39	8	40	1.1%	1.03 [0.34, 3.09]	
Oliveira 2013	16	49	15	45	1.8%	0.97 [0.41, 2.29]	
Schroeder 2009	3	14	3	13	0.4%	0.91 [0.15, 5.58]	
Shehabi 2014	30	196	26	198	3.7%	1.20 [0.68, 2.11]	
Stolz 2009	8	51	12	50	1.7%	0.59 [0.22, 1.59]	
Wang 2016	2	96	5	95	0.8%	0.38 [0.07, 2.02]	·
Subtotal (95% CI)		1852		1847	57.6%	0.82 [0.70, 0.96]	•
Total events	373		432				
Heterogeneity: Chi ² = 5	5.04, df = 9) (P = 0.8	33); l² = 0	%			
Test for overall effect: 2	Z = 2.46 (P	P = 0.01)					
1.4.3 Mixed							
Annane 2013	7	31	10	30	1.3%	0.58 [0.19, 1.81]	· · · · ·
Bouadama 2010	65	307	64	314	8.5%	1.05 [0.71, 1.55]	
Daubin 2018	19	151	17	151	2.5%	1.13 [0.57, 2.28]	
Subtotal (95% CI)		489		495	12.3%	1.02 [0.73, 1.41]	
Total events	91		91				
Heterogeneity: Chi ² = 1	.04, df = 2	? (P = 0.5	59); l² = 0	%			
Test for overall effect: 2	Z = 0.10 (F	° = 0.92)					
		2022		2240	100.08/	0.00 00.00 4.043	
Total (95% CI)	745	3233		3219	100.0%	0.90 [0.80, 1.01]	•
I otal events	715		771	0.04			
Heterogeneity: Chi ² = 8	3.99, df = 1	5 (P = 0	.88); l² =	0%			0.1 0.2 0.5 1 2 5 10
lest for overall effect: 2	2 = 1.82 (F	² = 0.07)			-		Favours [experimental] Favours [control]
Test for subaroup diffe	rences: Ch	$1i^2 = 2.74$. df = 2 (P = 0.2	5). $I^2 = 27$.1%	

Source: Peng F, et al. Int J Infect Dis. 2019;85:158-166

Figure 2. Forest plot of the effects of PCT-guided antibiotic strategies on short-term mortality.

Peng Results

Term of Mortality	Number of Trials	РСТ	SOC	Pooled OR	P Value
28 Day Mortality	8	595/2509	652/2510	0.88	0.05
ICU Mortality	5	99/677	95/669	1.03	0.86
Hospital Mortality	9	83/556	89/548	0.90	0.52
Cessation	10	373/1852	432/1847	0.82	0.01
SOFA > 8 < 8	9 3 6	371/1756 151/612 220/1144	427/1752 164/592 263/1160	0.83 0.85 0.81	0.02 0.23 0.04
Adherence > 70% < 70%	10 4 6	373/1852 56/380 317/1472	432/1847 54/378 378/1469	0.95 1.03 0.79	0.01 0.9 0.007

All listed terms of mortality have a heterogeneity of 0% between all studies included

Source: Peng F, et al. Int J Infect Dis. 2019;85:158-166

		РСТ		C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% Cl	IV. Random, 95% Cl
5.1.1 Initiation									
Jensen 2011	6.7	5.9	604	5.6	5.2	596	10.2%	1.10 [0.47, 1.73]	-
Subtotal (95% CI)			604			596	10.2%	1.10 [0.47, 1.73]	◆
Heterogeneity: Not app	olicable								
Test for overall effect:	Z = 3.43	(P = (0.0006)						
5.1.2 Cessation									
Bloos 2016	7.3	6.7	547	7.3	6.7	529	9.9%	0.00 [-0.80, 0.80]	+
De Jong 2016	5.3	3.7	761	7	4.5	785	10.6%	-1.70 [-2.11, -1.29]	~
Deliberato 2013	17.3	27.6	42	19.3	33.1	39	0.4%	-2.00 [-15.33, 11.33]	· · · ·
Hochreiter 2009	5.9	1.7	57	7.9	0.5	53	10.5%	-2.00 [-2.46, -1.54]	~
Nobre 2008	13.7	23.8	39	15.5	23.9	40	0.6%	-1.80 [-12.32, 8.72]	
Oliveira 2013	8.1	3.7	49	7.2	3.5	45	8.2%	0.90 [-0.56, 2.36]	<u>+</u>
Schroeder 2009	6.6	1.1	14	8.3	0.7	13	10.1%	-1.70 [-2.39, -1.01]	
Shehabi 2014	12	11.2	196	13	11.9	198	6.1%	-1.00 [-3.28, 1.28]	
Stolz 2009	10.7	7.6	51	16	9.9	50	3.9%	-5.30 [-8.75, -1.85]	
Wang 2016	12	12.5	96	17	17.9	95	2.8%	-5.00 [-9.38, -0.62]	
Subtotal (95% CI)			1852			1847	63.2%	-1.34 [-2.08, -0.60]	•
Heterogeneity: Tau ² =	0.67; Ch	ni² = 36	6.78, df	= 9 (P <	< 0.00	01); l² =	: 76%		
Test for overall effect:	Z = 3.56	(P = (0.0004)						
5.1.3 Mixed									
Annane 2013	4.7	0.8	31	4	2.3	30	9.7%	0.70 [-0.17, 1.57]	
Bouadama 2010	10.3	7.7	307	13.3	7.6	314	8.9%	-3.00 [-4.20, -1.80]	
Daubin 2018	7.9	8	151	7.7	5.7	151	7.9%	0.20 [-1.37, 1.77]	
Subtotal (95% CI)			489			495	26.6%	-0.70 [-3.10, 1.71]	
Heterogeneity: Tau ² =	4.11; Ch	ni² = 24	1.62, df	= 2 (P •	< 0.00	001); l²	= 92%		
Test for overall effect:	Z = 0.57	(P = (0.57)						
Total (95% CI)			2945			2938	100.0%	-0.99 [-1.85, -0.13]	•
Heterogeneity: Tau ² =	1.77; Ch	ni² = 12	24.67, c	if = 13 (P < 0.	00001);	l² = 90%		
Test for overall effect:	Z = 2.26	(P = ().02)						- 10
Test for subaroup diffe	rences:	Chi² =	24.71.	df = 2 (P < 0.	00001).	l² = 91.99	%	

Source: Peng F, *et al. Int J Infect Dis.* 2019;85:158-166

Figure 4. Forest plot of effects of PCT-guided antibiotic strategies on antibiotic duration.

Peng Results: Duration

	F	РСТ		Co	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% Cl	IV. Random, 95% CI
5.1.1 Initiation									
Jensen 2011	6.7	5.9	604	5.6	5.2	596	10.2%	1.10 [0.47, 1.73]	-
Subtotal (95% CI)			604			596	10.2%	1.10 [0.47, 1.73]	◆
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 3.43	(P = 0)).0006)	6					

McLeod Health

5.1.2 Cessation									
Bloos 2016	7.3	6.7	547	7.3	6.7	529	9.9%	0.00 [-0.80, 0.80]	+
De Jong 2016	5.3	3.7	761	7	4.5	785	10.6%	-1.70 [-2.11, -1.29]	-
Deliberato 2013	17.3	27.6	42	19.3	33.1	39	0.4%	-2.00 [-15.33, 11.33]	· · · · ·
Hochreiter 2009	5.9	1.7	57	7.9	0.5	53	10.5%	-2.00 [-2.46, -1.54]	~
Nobre 2008	13.7	23.8	39	15.5	23.9	40	0.6%	-1.80 [-12.32, 8.72]	
Oliveira 2013	8.1	3.7	49	7.2	3.5	45	8.2%	0.90 [-0.56, 2.36]	+
Schroeder 2009	6.6	1.1	14	8.3	0.7	13	10.1%	-1.70 [-2.39, -1.01]	~~
Shehabi 2014	12	11.2	196	13	11.9	198	6.1%	-1.00 [-3.28, 1.28]	
Stolz 2009	10.7	7.6	51	16	9.9	50	3.9%	-5.30 [-8.75, -1.85]	
Wang 2016	12	12.5	96	17	17.9	95	2.8%	-5.00 [-9.38, -0.62]	
Subtotal (95% CI)			1852			1847	63.2%	-1.34 [-2.08, -0.60]	•
Heterogeneity: Tau ² =	0.67; Cl	ni² = 36	6.78, df	= 9 (P	< 0.00	01); I² =	76%		

Test for overall effect: Z = 3.56 (P = 0.0004)

Source: Peng F, et al. Int J Infect Dis. 2019;85:158-166

5.1.3 Mixed								
Annane 2013	4.7	0.8	31	4	2.3	30	9.7%	0.70 [-0.17, 1.57]
Bouadama 2010	10.3	7.7	307	13.3	7.6	314	8.9%	-3.00 [-4.20, -1.80]
Daubin 2018	7.9	8	151	7.7	5.7	151	7.9%	0.20 [-1.37, 1.77]
Subtotal (95% CI)			489			495	26.6%	-0.70 [-3.10, 1.71]
Heterogeneity: Tau ² =	4.11; Ch	i² = 24	.62, df	= 2 (P <	0.000	01); l ² :	= 92%	
Test for overall effect:	Z = 0.57	(P = 0)	.57)					

McLeod Health

Source: Peng F, et al. Int J Infect Dis. 2019;85:158-166

		РСТ		C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% CI	IV. Random, 95% Cl
5.1.1 Initiation									
Jensen 2011	6.7	5.9	604	5.6	5.2	596	10.2%	1.10 [0.47, 1.73]	-
Subtotal (95% CI)			604			596	10.2%	1.10 [0.47, 1.73]	◆
Heterogeneity: Not app	olicable								
Test for overall effect:	Z = 3.43	(P=0).0006)						
5.1.2 Cessation									
Bloos 2016	7.3	6.7	547	7.3	6.7	529	9.9%	0.00 [-0.80, 0.80]	7
De Jong 2016	5.3	3.7	761	7	4.5	785	10.6%	-1.70 [-2.11, -1.29]	· *
Deliberato 2013	17.3	27.6	42	19.3	33.1	39	0.4%	-2.00 [-15.33, 11.33]	· · · · · · · · · · · · · · · · · · ·
Hochreiter 2009	5.9	1.7	57	7.9	0.5	53	10.5%	-2.00 [-2.46, -1.54]	~
Nobre 2008	13.7	23.8	39	15.5	23.9	40	0.6%	-1.80 [-12.32, 8.72]	
Oliveira 2013	8.1	3.7	49	7.2	3.5	45	8.2%	0.90 [-0.56, 2.36]	<u>+</u>
Schroeder 2009	6.6	1.1	14	8.3	0.7	13	10.1%	-1.70 [-2.39, -1.01]	
Shehabi 2014	12	11.2	196	13	11.9	198	6.1%	-1.00 [-3.28, 1.28]	
Stolz 2009	10.7	7.6	51	16	9.9	50	3.9%	-5.30 [-8.75, -1.85]	
Wang 2016	12	12.5	96	17	17.9	95	2.8%	-5.00 [-9.38, -0.62]	
Subtotal (95% CI)			1852			1847	63.2%	-1.34 [-2.08, -0.60]	•
Heterogeneity: Tau ² =	0.67; Ch	ni² = 36	5.78, df	= 9 (P •	< 0.00	01); l² =	= 76%		
Test for overall effect:	Z = 3.56	6 (P = 0	0.0004)						
5.1.3 Mixed									
Annane 2013	4.7	0.8	31	4	2.3	30	9.7%	0.70 [-0.17, 1.57]	
Bouadama 2010	10.3	7.7	307	13.3	7.6	314	8.9%	-3.00 [-4.20, -1.80]	
Daubin 2018	7.9	8	151	7.7	5.7	151	7.9%	0.20 [-1.37, 1.77]	
Subtotal (95% CI)		-	489			495	26.6%	-0.70 [-3.10, 1.71]	
Heterogeneity: Tau ² =	4.11: Ch	ni² = 24	1.62. df	= 2 (P •	< 0.00	001): I ²	= 92%		
Test for overall effect:	Z = 0.57	(P=0	0.57)	,		,.			
Total (95% CI)			2945			2938	100.0%	-0.99 [-1.85, -0.13]	•
Heterogeneity: Tau ² =	1.77: CH	ni² = 12	24.67 d	f = 13 (P < 0.0	00001	$l^2 = 90\%$		
Test for overall effect:	7 = 2.26	(P = 0)	1 02)				0070	1	-10 -5 0 5 10
Test for subgroup diffe	rences.	Chi ² =	24 71	df = 2	P < 0.0	10001	$l^2 = 91.99$	16	Favours [experimental] Favours [control]
reaction adouted unle	101063.		24.71.	01 - 21	- 0.0		1 - 51.57		

Source: Peng F, *et al. Int J Infect Dis.* 2019;85:158-166

Figure 4. Forest plot of effects of PCT-guided antibiotic strategies on antibiotic duration.

Peng Take Away

Author's Conclusions

- No short-term mortality benefit seen with PCT use for initiation of antibiotics
- PCT guided cessation strategies decreased short term mortality and antibiotic durations

Evaluation

- Meta analysis design
- Size of study
- Diagnostic criteria of sepsis varied between the included studies
- Variance of strategies between studies
- Most benefit with adherence < 70%

Assessment Question 1: McLeod Health Which of the following is an advantage of procalcitonin compared to other inflammatory markers?

a) Procalcitonin is specific to viral infection

b) Procalcitonin has no advantage over other inflammatory markers

- c) Procalcitonin is rarely falsely elevated
- d) Procalcitonin is not elevated in response to most viral infections

Assessment Question 1: Correct Response McLeod Health Which of the following is an advantage of procalcitonin compared to other inflammatory markers?

a) Procalcitonin is specific to viral infection

b) Procalcitonin has no advantage over other inflammatory markers

c) Procalcitonin is rarely falsely elevated

d) Procalcitonin is not elevated in response to most viral infections

Assessment Question 2: McLeod Health What procalcitonin level is a negative predictor for bacterial infection?

- a) < 0.25 ng/mL
- b) < 0.5 ng/mL
- c) > 2.5 ng/mL
- d) > 5 ng/mL

Assessment Question 2: Correct Response McLeod Health What procalcitonin level is a negative predictor for bacterial infection?

- a) < 0.25 ng/mL
- b) < 0.5 ng/mL
- c) > 2.5 ng/mL
- d) > 5 ng/mL

Assessment Question 3: McLeod Health Which situation could lead to a falsely elevated procalcitonin?

a) Antibiotic use

- b) Augmented renal clearance
- c) Viral infections
- d) Trauma

Assessment Question 3: Correct Response McLeod Health Which situation could lead to a falsely elevated procalcitonin?

a) Antibiotic use

- b) Augmented renal clearance
- c) Viral infections
- d) Trauma

PCT algorithm for initiation and discontinuation of antibiotics in septic patients

Draw PCT at admission and if on antibiotics at day 5

Most benefit seen in pulmonary infections

No benefit to broaden antibiotics or increase diagnostic efforts after initial diagnosis

Should not be used to differentiate between respiratory infection vs COPD or asthma exacerbation

Proposed Procalcitonin Algorithm

McLeod Health

References

McLeod Health

- Allison B Chambliss, Khushbu Patel, Jessica M Colón-Franco, et al. AACC Guidance Document on the Clinical Use of Procalcitonin. The Journal of Applied Laboratory Medicine. 2023;8(3):598–634.
- Bouadma L, Luyt C-E, Tubach F, Cracco C, Alvarez A, Schwebel C, et al. Use of procalcitonin to reduce patients' exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. *Lancet Lond Engl.* 2010;375: 463-74.
- Dark P, Hossain A, McAuley DF, et al. Biomarker-Guided Antibiotic Duration for Hospitalized Patients With Suspected Sepsis: The ADAPT-Sepsis Randomized Clinical Trial. JAMA. Published online December 9, 2024.
- de Jong E, van Oers JA, Beishuizen A, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. *Lancet Infect Dis.* 2016;16(7):819-827
- Gauger J. ESR, CRP, and Procalcitonin: Acute Inflammatory Markers in the ED. *Emergency Medicine Tamed*. Published October 02, 2016. Accessed January 14, 2024. <u>https://www.tamingthesru.com/blog/2016/10/2/esr-crp-procalcitonin-acute-inflammatory-markers-in-the-ed</u>.
- Huang DT, Yealy DM, Filbin MR, et al. Procalcitonin-Guided Use of Antibiotics for Lower Respiratory Tract Infection. N Engl J Med. 2018;379(3):236-249.
- Jensen JU, Hein L, Lundgren B, et al. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med. 2011;39(9):2048-2058.
- Lee H. Procalcitonin as a biomarker of infectious diseases. *Korean J Intern Med.* 2013;28(3):285-291.
- Liu C, Tang J. Expression levels of tumor necrosis factor-α and the corresponding receptors are correlated with trauma severity. Oncol Lett. 2014;8(6):2747-2751.
- Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683-765.
- Peng F, Chang W, Xie JF, Sun Q, Qiu HB, Yang Y. Ineffectiveness of procalcitonin-guided antibiotic therapy in severely critically ill patients: A meta-analysis. Int J Infect Dis. 2019;85:158-166
- Weidhase L, Wellhöfer D, Schulze G, *et al.* Is Interleukin-6 a better predictor of successful antibiotic therapy than procalcitonin and C-reactive protein? A single center study in critically ill adults. *BMC Infect Dis.* 2019;19(1):150. Published 2019 Feb 13.

Thank you!

Gresham Hindman, PharmD PGY1 Pharmacy Resident gresham.hindman@mcleodhealth.org