

Navigating Through Microbiology Changes That Impact Your Antimicrobial Stewardship Program

Jill Cowper, PharmD, BCIDP Division Infectious Diseases Pharmacist HealthTrust Performance Group

Reginalde Philogene, MT(M)ASCP Microbiology Technical Consultant HCA Laboratory Service Line Laura Cwengros, PharmD, BCIDP Infectious Diseases Clinical Manager HCA Healthcare

The presenters have no real or perceived conflicts of interest related to content in this presentation.

Note: The content presented is for informational purposes only and is based upon the presenter(s) knowledge and opinion. It should not be relied upon without independent consultation with and verification by appropriate professional advisors. Individuals and organizations shall have sole responsibility for any actions taken in connection with the content herein. HealthTrust, the program presenter(s) and their employers expressly disclaim any and all warranties as to the content as well as any liability resulting from actions or omissions of any individual or organization in reliance upon the content.

This program may contain the mention of suppliers, brands, products, services or drugs presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes and should not be perceived as an endorsement of any particular supplier, brand, product, service or drug.

Learning Objectives

At the end of this session, participants should be able to:

- 1. Recall recent changes to performance standards for antimicrobial susceptibility testing
- 2. Identify the impact of changes in antibiotic breakpoints on antimicrobial use
- 3. Recognize cascade and selective reporting rules in collaboration with microbiology and antimicrobial stewardship teams to optimize patient care

Abbreviations

CLSI	Clinical & Laboratory Standards Institute	MIC	Minimum inhibitory concentration	
CRE	Carbapenem resistant Enterobacterales	PD	Pharmacodynamic	
ECV	Epidemiological cutoff value	РК	Pharmacokinetic	
EHR	Electronic health record	R	Resistant	
ESBL	Extended spectrum beta-lactamase	S	Susceptible	
I	Intermediate	SDD	Susceptible dose-dependent	
ID	Infectious diseases	TMP/SMX	Trimethoprim/sulfamethoxazole	
KB	Kirby Bauer	UTI	Urinary tract infection	
MDRO	Multidrug resistant organism			

	Background & Significant Updates in 2023–2024	J. Cowper
Breakpoints	Microbiology Perspective	R. Philogene
	Antimicrobial Stewardship Perspective	L. Cwengros
	Selective & Cascade Reporting	J. Cowper
Selective & Cascade Reporting	Microbiology Perspective	R. Philogene
	Antimicrobial Stewardship Perspective	L. Cwengros
HCA Process in	Breakpoints & Standardized Cascade Rules	R. Philogene & J. Cowper
2023–2024	Antimicrobial Stewardship & Microbiology Collaboration	L. Cwengros

BREAKPOINTS

Source: Getty Images. Used with permission from HealthTrust.

CONFIDENTIAL – Contains proprietary information.

Breakpoints / Susceptibility Test Interpretive Criteria (STIC)

- Breakpoints
 - Susceptibility test interpretive criteria (STIC)
 - o Informs clinicians about a given antimicrobial's potential efficacy against an isolated pathogen
- Food & Drug Administration (FDA) and Clinical & Laboratory Standards Institute (CLSI)
 - Recognized standards development organizations allowed to set or revise STIC
- Prior to 2024, challenges in implementing new breakpoints frequently led to delays in adoption by clinical labs
- As of 1/1/2024, current breakpoints must be used to meet regulatory requirements

Sources:

- 1. Clinical and Laboratory Standards Institute. 2023 Breakpoint Implementation Toolkit (2023 BIT). Available at: <u>https://clsi.org/bit-toolkit/</u>. Accessed 5/6/2024.
- Humphries R. AST News Update June 2022: Updating Breakpoints-New Developments from CAP. August 2, 2022. Available at: <u>https://clsi.org/about/blog/ast-news-update-june-2022-updating-breakpoints-new-developments-from-cap/</u>. Accessed 5/6/2024.

Breakpoints – Why are they updated?

Breakpoints are based on 3 data sources:

Microbiologic

• MIC distribution & epidemiological cutoff values

Pharmacokinetic & pharmacodynamic (PK/PD)

Antibiotic exposures & "probability of target attainment"

Clinical outcomes

Correlation of microbiologic & PK/PD with patient outcomes

CLSI monitors the need for updates & publishes updated breakpoints in their annual M100 standards

Sources:

- 1. Tamma PD, Harris PNA, Mathers AJ, Wenzler E, Humphries RM. Breaking down the breakpoints: rationale for the 2022 Clinical and Laboratory Standards Institute revised piperacillin-tazobactam breakpoints against Enterobacterales. *Clin Infect Dis* 2022: ciac688.
- 2. Tamma PD, Harris PNA, Mathers AJ, Wenzler E, Humphries RM. Deconstructing the 2023 Clinical and Laboratory Standards Institute revised piperacillin-tazobactam breakpoints against Pseudomonas aeruginosa. *Clin Infect Dis* 2023: ciad012.

CLSI Significant Breakpoint Updates

2023

- Aminoglycosides & Enterobacterales
- Aminoglycosides & Pseudomonas aeruginosa
- Piperacillin/tazobactam & P. aeruginosa
- Levofloxacin comment for
 Stenotrophomonas maltophilia

2024

- Ceftazidime & S. maltophilia
- TMP/SMX comment for S. maltophilia
- Minocycline & S. maltophilia

Source: CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2024.

- No aminoglycoside safely predicted to achieve bactericidal activity
- Bacterial stasis achievable with extended-interval dosing – only at MICs less than the pre-2023 susceptible breakpoints
- Epidemiological cutoff value (ECV) for gentamicin & *P. aeruginosa* was 8 mg/L
 - ECV is upper end of reference strain distribution isolates with MICs above EVC expected to have acquired or mutational resistance mechanisms
 - Bacterial stasis only possible at MICs ≤0.5 mg/L

Source: The United States Committee on Antimicrobial Susceptibility Testing. 2023 USCAST Virtual Public Meeting: Updates on Aminoglycoside Breakpoints. February 8, 2023. <u>https://www.uscast.org/</u>. Accessed 5/6/2024.

- Source: Humphries RM. AST News Update June 2023: New! CLSI M100-Ed33: Updated Aminoglycoside Breakpoints for Enterobacterales and Pseudomonas aeruginosa. 6/21/2023. Available at: https://clsi.org/about/blog/ast-news-update-june-2023-new-clsi-m100-ed33-updated-aminoglycoside-breakpoints-for-enterobacterales-and-pseudomonas-aeruginosa/. Accessed 5/6/2024.
- 10 | CE Credit Deadline: 09/30/24

Aminoglycoside Breakpoint Changes

Antibiotic	Breakpoint Change	New I	Break (mg/L	points)	Breakpoint Change	New E (Breakp mg/L)	ooints
Organism	Enterobacterales	S	I	R	P. aeruginosa	S	I	R
Gentamicin	Lowered	≤2	4	≥ 8	Deleted			
Tobramycin	Lowered	≤2	4	≥ 8	Lowered	≤ 1	2	≥ 4
Amikacin	Lowered	≤ 4	8	≥ 16	Changed to urine only	≤ 16	32	≥ 64

New comments:

- Monotherapy use should be limited to UTIs
- Consider combination therapy for indications other than UTIs
- Consultation with ID specialist recommended
- Breakpoints based on extended-interval dosing (7 mg/kg every 24 hours for gentamicin/tobramycin & 15 mg/kg every 24 hours for amikacin)

Source: CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2024.

Pip/Tazo breakpoints for Enterobacterales were changed in 2022

Piperacillin/Tazobactam Breakpoints for *P. aeruginosa*

- ECV is 16 mcg/mL
 - $_{\odot}\,$ ECV is upper end of reference strain distribution
 - Breakpoints below ECV are discouraged high error rates
- PK/PD data showed:
 - Standard infusions (30 min) were adequate at MICs ≤8 mg/L
 - Extended infusions (3 hours) given every 6 hours needed for MICs=16 mg/L
- Clinical outcomes data indicate increased mortality at MICs ≥32 mg/L
 No data available on extended-infusion & patient outcomes by MIC

Source: Tamma PD, Harris PNA, Mathers AJ, Wenzler E, Humphries RM. Deconstructing the 2023 Clinical and Laboratory Standards Institute revised piperacillin-tazobactam breakpoints against Pseudomonas aeruginosa. *Clin Infect Dis* 2023; 76(10): 1868-70.

Piperacillin/Tazobactam Breakpoints for P. aeruginosa

- Intermediate & resistant breakpoints were lowered
- Susceptible breakpoint did not change

New comments:

- Breakpoint for susceptible based on dose of 4.5 grams every 6 hours
- Breakpoint for intermediate only to provide buffer zone to prevent small uncontrolled technical factors from causing major discrepancies in interpretations

Source: CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2024.

13 | CE Credit Deadline: 09/30/24

S. maltophilia Changes

	Not considered appropriate for testing, reporting or for treatment
CeftazidimeBreakpoints removed	 No high-quality clinical outcomes data Major error rates in susceptibility testing MIC distribution Intrinsic beta-lactamases that render ceftazidime ineffective
Minocycline	 Susceptible breakpoint ≤1 mg/L
 Breakpoints lowered 	 MIC distribution PK/PD data with higher dose of 200mg IV/PO every 12 hours
Levofloxacin	 Should not be used alone for therapy
 TMP/SMX Comment added 	 Added to align with IDSA 2023 Guidance on Treatment of Antimicrobial Resistant Gram-Negative Infections

Sources:

1. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2024.

2. Bixby ML, Zheng D, Hirsch EB. Long story short: establishing breakpoints for antimicrobials and 2023 updates. Curr Infect Dis Rep 2024; 26: 47-55.

14 | CE Credit Deadline: 09/30/24

Assessment Question #1

Based on recent changes to performance standards for antimicrobial susceptibility testing, which of the following antibiotics are no longer considered an effective treatment option for Pseudomonas aeruginosa?

- a. Piperacillin/tazobactam
- b. Ceftazidime
- c. Gentamicin
- d. Tobramycin

Answer: Assessment Question #1

Based on recent changes to performance standards for antimicrobial susceptibility testing, which of the following antibiotics are no longer considered an effective treatment option for Pseudomonas aeruginosa?

- a. Piperacillin/tazobactam
- b. Ceftazidime
- c. Gentamicin
- d. Tobramycin

Why is it challenging for clinical labs?

- Major CLSI changes began in 2010
 - $_{\odot}\,$ CLSI vs. FDA breakpoints not aligned
 - $_{\odot}$ Antimicrobial susceptibility testing (AST) devices must follow FDA
 - 2023 CAP required laboratories to update breakpoints
- FDA vs. AST devices updates
 - $_{\odot}\,$ Prior to 2007, both FDA & CLSI breakpoints could be reported
 - $_{\odot}\,$ 2007 FDA class II special guidance
 - Required AST devices report FDA-recognized breakpoints
 - CLSI breakpoints only allowed for instruments with clearance in 2007 or earlier
 - $\,\circ\,$ 2009 FDA revision
 - AST devices should follow antimicrobial's instructions for use & only report breakpoints for organisms with in vivo efficacy

Source: Regulatory Hurdles for Updating Breakpoints: What to Know (asm.org)

Other Factors Impacting Breakpoint Updates

- Updating breakpoints can be complicated
 - Pharmacy requests vs. FDA Indication For Use vs.
 Pharma labeling
 - $_{\odot}$ Validation & manual testing
 - Communication/collaboration needed
 - FDA vs. CLSI vs. Pharmaceutical label vs. clinical need
 - Clinical labs are trying to figure it out & provide quality results
- Other challenges for clinical labs
 - \circ Staffing
 - Continue to heavily impact laboratories
 - Experienced techs are retiring
 - Learning GAP
 - o Other resources are limited
 - LIS/IT
 - Needed to make updates
 - AST updates are manual challenging to automate
 - Requires close collaboration with clinical labs
- 18 | CE Credit Deadline: 09/30/24

Overcoming Challenges With Updating Breakpoints

Recent breakpoint updates

- Aminoglycosides
- Piperacillin/tazobactam
- S. maltophilia

TEAMWORK

AST device company

Determine breakpoints gaps What's new? Last time agents were submitted for clearance Roadmap to align with updated breakpoints Off-label testing New organism claims FDA indications for use

Pharmacy & other stakeholders

Discuss FDA indications for use vs. off-label testing,

Choose the right panel, cascade, etc.

Limitations FDA vs. CLSI breakpoints Outline a plan for success Panel types Finalize standardized cascade Build standardized antibiotics & panels in LIS Create calculations/rules Create verification/ validation plan Create communication plans Set target date

Source: Regulatory Hurdles for Updating Breakpoints: What to Know (asm.org)

Aminoglycoside Activity Against Enterobacterales

Impact of Breakpoint Changes at JW

JW = Johnston-Willis Hospital

Source: CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2024.

20 | CE Credit Deadline: 09/30/24

Review Antibiotics Impacted by Breakpoint Update

- Use of aminoglycosides in sepsis & septic shock for *P. aeruginosa*
- CLSI removed gentamicin
 breakpoints for *P. aeruginosa*
- Update antibiogram (remove gentamicin for *P. aeruginosa* use)
- Sepsis order sets
 - Change gentamicin to tobramycin
 - Change facility-order sets

JW = Johnston-Willis Hospital CMC = Chippenham Medical Center

How do breakpoints impact empiric selection?

Assessment Question #2

Changes in antibiotic breakpoints on antimicrobial use may have which of the following impacts?

- A. Empiric antibiotic selection for sepsis
- B. Susceptibility rate on antibiogram
- C. Limited use to a certain site of infection (i.e. cystitis)
- D. All of the above

Assessment Question #2

Changes in antibiotic breakpoints on antimicrobial use may have which of the following impacts?

- A. Empiric antibiotic selection for sepsis
- B. Susceptibility rate on antibiogram
- C. Limited use to a certain site of infection (i.e. cystitis)
- D. All of the above

SELECTIVE & CASCADE REPORTING

Source: Getty Images. Used with permission from HealthTrust.

CONFIDENTIAL - Contains proprietary information.

Selective & Cascade Reporting

Selective Reporting

 Reporting results for specific antibiotics based on defined criteria that are unrelated to susceptibility results

Examples

- Nitrofurantoin is only reported on urine isolates
- Daptomycin is not reported on respiratory isolates

Cascade Reporting

- Reporting results for specific antibiotics based on overall susceptibility profile of that isolate
- Results for secondary or broader-spectrum agents only reported if isolate is resistant to primary or narrower-spectrum agents

Examples

- *E. coli* that is susceptible to cefazolin would have results suppressed for cefepime
- *P. aeruginosa* that is susceptible to cefepime or piperacillin/tazobactam would have results suppressed for meropenem & imipenem

Source: CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2024.

Selective & Cascade Reporting – Advantages & Evidence

Study	Results
Simon 2023	\downarrow broad-spectrum antibiotics, driven by \downarrow in 3 rd generation cephalosporins (P<0.001)
Hernando 2022	↑ testing appropriateness (P<0.0001)
Munting 2022	↓ meropenem use (P<0.001)
Daley 2018	↑ appropriate treatment (P=0.002)
Langford 2016	\downarrow ciprofloxacin use (P<0.001) & \downarrow <i>E. coli</i> resistance at 12 & 24 months
Heireman 2022	\downarrow piperacillin/tazobactam use (P=0.049) & \downarrow ESBLs (P<0.001) & carbapenemase-positive Enterobacterales (P=0.009)
Liao 2019	↓ cefepime use (P<0.001)
Vissichelli 2020	\downarrow meropenem (P=0.005), piperacillin/tazobactam (P=0.002) & ciprofloxacin (P<0.001)
Overall	 ↓ use of broad-spectrum, costly, less effective and/or more toxic antibiotics ↓ resistance to suppressed antibiotics ↑ use of narrow-spectrum & more appropriate antibiotics ↑ testing appropriateness

Sources: see table above and list of references at end of slide deck.

Selective & Cascade Reporting – CLSI M100 Tables 1A-1J

Why the change

- New antimicrobials
- New mechanisms of resistance
- Increasing prevalence of multidrug resistance
- Additional emphasis & requirements for antimicrobial stewardship programs

What changed

- Vertical to horizontal format to help facilitate cascade reporting
- "Groups" changed to "tiers"
- New tier (tier 3)
- Definitions & guidance for use of tiers

Tier 1	Tier 2	Tier 3	Tier 4
Appropriate for routine, primary testing & reporting	Appropriate for routine, primary testing but may be reported following cascade rules	Appropriate for routine, primary testing in sites that serve patients at high risk for MDROs but only report following cascade rules	May warrant testing & reporting by clinician request if antibiotics in other tiers are not optimal

Sources:

1. "Partnering Laboratory with Stewardship to Navigate Breakpoint Updates and Other New CLSI Recommendations to Enhance Clinical Practice,," Society of Infectious Diseases Pharmacist, American College of Clinical Pharmacy, and Clinical and Laboratory Standards Institute. <u>https://www.sidp.org/SIDPEC</u>. Accessed 5/10/2024.

2. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2024.

Example: CLSI M100 Table 1B-1 for *P. aeruginosa*

Antimicrobials by Tier Group That Should be Considered for Testing & Reporting for *P. aeruginosa*

Tier 1 Appropriate for routine, primary testing & reporting	Tier 2 Appropriate for routine, primary testing but may be reported following cascade rules	Tier 3 Appropriate for routine, primary testing if high MDRO rates but only report following cascade rules	Tier 4 May warrant testing & reporting by clinician request if antibiotics in other tiers are not optimal
Ceftazidime	Imipenem, meropenem	Cefiderocol	
Cefepime		Ceftazidime-avibactam	
Piperacillin-tazobactam		Ceftolozane-tazobactam	
		Imipenem-relebactam	
Tobramycin			
Ciprofloxacin, levofloxacin			
			Aztreonam
Urine Only			
	Amikacin		

Source: CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2024.

Example: CLSI M100 Table 1B-1 for P. aeruginosa

Antimicrobials by Tier Group That Should be Considered for Testing & Reporting for P. aeruginosa

Source: CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2024.

30 | CE Credit Deadline: 09/30/24

Selective & Cascade Reporting

- Panel type
 - Formulary needs & updated breakpoints
 - Pros & cons
 - Automated vs. Manual testing

Education

- \circ Training
 - Laboratory staff understanding the why
 - Stewardship team communicate with pharmacy/providers
 - Utilize AST device for flags/comments for reminders

• LIS/IT

- Create rules in LIS to automate
 - Do not utilize AST device for cascade rules if possible
 - Opportunity to automate antibiogram in LIS
- Determine a pilot site if standardizing more than one site
 - Test rules/cascade with pilot site
- Feedback/Revisions:
 - Outline a plan to track feedback & requests
 - Laboratory will receive a lot of calls/requests
 - Partner with pharmacy to escalate/assist
 - Edits to the cascade impacts laboratory
 - Additional verification/validation may be needed
 - IT/LIS resources may be needed

Case Study: Prior to Selective Reporting

- 35-year-old male is admitted to the ICU & is started on ceftriaxone for septic shock
- Blood & urine cultures obtained. Blood cultures grew polymicrobial *E. coli* & ESBL *K. oxytoca*

	ESCHERICHIA COLI		KLEBDIELLA	OXYTOCA-ESEL
	INTERP	M.I.C.	INTERP	M.I.C.
AMOXICILLIN/CLAVULANATE	s	<=2		
AMPICILLIN/SULBACTAM	S	<=2		
CEFTRIAXONE	S	<=0.25	R	>=64
CEFOXITIN	S	<=4	S	<=4
CEFEPIME			I	4
CIPROFLOXACIN	S	<=0.06	R	1
GENTAMICIN	S	<=1	S	<=1
LEVOFLOXACIN	S	<=0.12	S	1
MEROPENEM			S	<=0.25
SULFAMETHOXAZOLE/TRIMETHOPRIM	S	<=20	R	>=320
	ESCHERICHIA C	OLI	KLEBSIELLA	OXYTOCA-ESBL
	INTERP	INTERP		
AMPICILLIN	S			
CEFAZOLIN	I	R		

Source: HCA Healthcare data. Not for reuse without permission of HCA Healthcare.

32 | CE Credit Deadline: 09/30/24

ESBLs: Impact of Selective Cascade Reporting 2

Without cascade reporting (blood)

- Ceftriaxone
- Cefoxitin
- Cefepime
- Gentamicin
- Meropenem
- Ciprofloxacin
- Levofloxacin
- TMP/SMX

33

- Markers for ESBL, cefoxitin: *in vitro activity*
- *In vitro* activity, use only in cystitis

Drugs of choice

Source: HCA Healthcare LSL antibiotic susceptibility testing panels. Feb 2024 version. Not for reuse without permission of HCA Healthcare.

With cascade reporting (blood)

- Gentamicin
- Meropenem
- Ciprofloxacin
- Levofloxacin
- TMP/SMX
- Ertapenem (only if I or R)

 Drugs of choice

TMP/SMX Cefoxitin Ceftriaxone CONFIDENTIAL - Contains proprietary information

34 | CE Credit Deadline: 09/30/24

The intensivist reviewed the susceptibilities for the ESBL (more resistance)

• De-escalated to cefoxitin (narrowest) susceptible option

	ESCHERICHIA CO	LI	KLEBSIELLA OXYTOCA-ESBL	
	INTERP	M.I.C.	INTERP	M.I.C.
AMOXICILL IN/CLAVULANATE	S	<=2		
AMPICILLIN/SULBACTAM	S	<=2		
CEFTRIAXONE	s	<=0.25	R	>=64
CEFOXITIN	S	<=4	S	<=4
CEFEPIME			I	4
CIPROFLOXACIN	S	<=0.06	R	1
GENTAMICIN	S	<=1	S	<=1
LEVOFLOXACIN	S	<=0.12	S	1
MEROPENEM			S	<=0.25
SULFAMETHOXAZOLE/TRIMETHOPRIM	S	<=20	R	>=320
	ESCHERICHIA CO	LI	KLEBSIELLA	OXYTOCA-ESBL
	INTERP	INTERP		
AMPICILLIN	s		%	
CEFAZOLIN	I	R		

De-escal	ating	Based	on	Suscep	otibi	lities

Current Evidence-based Medicine & Guideline

Preferred antibiotics for systemic ESBL infections

- Critically ill: carbapenems (i.e., meropenem)
- After clinical response: oral (TMP/SMX, ciprofloxacin or levofloxacin)

Antibiotics with *in vitro* activity to avoid

- Cefepime:
 - $_{\odot}$ Hydrolyzed by ESBLs
 - $_{\odot}$ MIC testing can be inaccurate
- Cefoxitin (cephamycins):
 - o "Stable" against ESBLs
 - Higher mortality rate compared to carbapenems in bacteremias

Sources:

- 1. Tamma PD, et al. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin Infect Dis. 2023;, ciad428.
- 2. Yang CC, et al. Discrepancy between effects of carbapenems and flomoxef in treating nosocomial hemodialysis access-related bacteremia secondary to extended spectrum betalactamase producing Klebsiella pneumoniae in patients on maintenance hemodialysis. *BMC Infect Dis.* 2012; 12:206.
- 3. Lee CH, et al. Comparative effectiveness of flomoxef versus carbapenems in the treatment of bacteremia due to extended-spectrum beta-lactamase producing Escerichia coli or Klebsiella pneumoniae with emphasis on minimum inhibitory concentration of flomoxef: A retrospective study. *Int J Antimicrob Agents*. 2015; 46(6): 610-5.

35 | CE Credit Deadline: 09/30/24

Assessment Question #3

You are rounding with the intensivist team & notice the provider has narrowed ceftriaxone to cefoxitin for patient in septic shock

QTc 580, Scr 2.5 (baseline 1)

What do you recommend?

- A. Continue cefoxitin
- B. Escalate to levofloxacin
- C. Escalate to gentamicin
- D. Escalate to meropenem

Assessment Question #3

You are rounding with the intensivist team & notice the provider has narrowed ceftriaxone to cefoxitin for patient in septic shock

QTc 580, Scr 2.5 (baseline 1)

What do you recommend?

- A. Continue cefoxitin
- B. Escalate to levofloxacin
- C. Escalate to gentamicin
- D. Escalate to meropenem

QTc = corrected QT interval Scr = serum creatinine

Case Study: CRE Infections

Urine culture

ESCHERICHIA COLI-CRE		
	INTERP	M.I.C.
-		
CEFTAZIDIME	R	>=64
CEFEPIME	R	>=32
CIPROFLOXACIN	R	>=4
NITROFURANTOIN	S	<=16
GENTAMICIN	ន	<=1
LEVOFLOXACIN	R	>=8
MEROPENEM	R	>=16
PIPERACILLIN/TAZOBACTAM	R	>=128
SULFAMETHOXAZOLE/TRIMETHOPRIM	S	<=20
ESCHERICHIA COLI-CRE		
ESCHERICHIA COLI-CRE	INTERP	M.I.C.
ESCHERICHIA COLI-CRE	INTERP	M.I.C.
ESCHERICHIA COLI-CRE CEFTAZIDIME	INTERP R	M.I.C.
ESCHERICHIA COLI-CRE CEFTAZIDIME NITROFURANTOIN	INTERP R S	M.I.C.
ESCHERICHIA COLI-CRE - CEFTAZIDIME NITROFURANTOIN GENTAMICIN	INTERP R S S	M.I.C. >=64 <=16 <=1
ESCHERICHIA COLI-CRE CEFTAZIDIME NITROFURANTOIN GENTAMICIN MEROPENEM	INTERP R S S R	M.I.C. >=64 <=16 <=1 >=16
ESCHERICHIA COLI-CRE CEFTAZIDIME NITROFURANTOIN GENTAMICIN MEROPENEM SULFAMETHOXAZOLE/TRIMETHOPRIM	INTERP R S S R S	M.I.C. >=64 <=16 <=1 >=16 <=20
ESCHERICHIA COLI-CRE CEFTAZIDIME NITROFURANTOIN GENTAMICIN MEROPENEM SULFAMETHOXAZOLE/TRIMETHOPRIM MEROPENEM-VABORBACTAM	INTERP R S S R S R S R	M.I.C. >=64 <=16 <=1 >=16 <=20 32
ESCHERICHIA COLI-CRE CEFTAZIDIME NITROFURANTOIN GENTAMICIN MEROPENEM SULFAMETHOXAZOLE/TRIMETHOPRIM MEROPENEM-VABORBACTAM CEFTAZIDIME/AVIBACTAM	INTERP R S S R S R R R R R	M.I.C. >=64 <=16 <=1 >=16 <=20 32 >=16

Source: HCA Healthcare LSL antibiotic susceptibility testing panels. Feb. 2024 version. Not for reuse without permission of HCA Healthcare.

38 | CE Credit Deadline: 09/30/24

Blood culture

Organism 1	ESCHERICHIA C ADDITIONAL SU 1 SET POSITIV	COLI-CRE ISCEPTIBILITY VE OUT OF 2 S	Y TO FOLLOW SETS COLLECTED
ESCHERICHIA COLI-CRE	INTERP	M.I.C.	_
CEFTAZIDIME	R	>=64	
CIPROFLOXACIN	R	>=4	
GENTAMICIN	ន	<=1	
LEVOFLOXACIN	R	>=8	
MEROPENEM	R	>=16	
SULFAMETHOXAZOLE/TRIMETHOPRIM	R	>=320	
MEROPENEM-VABORBACTAM	R	>=64	
CEFTAZIDIME/AVIBACTAM	R	>=16	
TETRACYCL INE	ន	2	
ESCHERICHIA COLI-CRE	INTERP	M.I.C.	
IMIPENEM RELEBACTAM	R	>=32	-

CONFIDENTIAL - Contains proprietary information.

Multi-step Process for Microbiology

Source: HCA Healthcare LSL antibiotic susceptibility testing panels. Feb. 2024 version. Not for reuse without permission of HCA Healthcare.

Cascade Reporting to Help the Clinician

Source: HCA Healthcare LSL antibiotic susceptibility testing panels. Feb. 2024 version. Not for reuse without permission of HCA Healthcare.

40 | CE Credit Deadline: 09/30/24

Cascade Reporting When Resistance Is Detected

Source: HCA Healthcare LSL antibiotic susceptibility testing panels. Feb 2024 version. Not for reuse without permission of HCA Healthcare.

41 | CE Credit Deadline: 09/30/24

HCA PROCESS IN 2023-2024

Source: Getty Images. Used with permission from HealthTrust.

CONFIDENTIAL - Contains proprietary information.

HCA Process in 2023–2024

- HCA standardized AST reporting across HCA to:
 - Phase out obsolete breakpoints
 - Comply with CAP/regulatory requirements
 - Support HCA Clinical Pharmacy Services stewardship initiatives by:
 - Standardizing antibiotic test panels used by HCA microbiology laboratories
 - Standardizing antibiotic suppression & cascade rules used across HCA laboratories using Table 1 in CLSI M100 as a guide
 - Aligning with formulary- and guideline-recommended antibiotics

HCA Process in 2023–2024

• Implementation plan for clinical labs

Source: HCA Healthcare. Not for reuse without permission of HCA Healthcare.

44 | CE Credit Deadline: 09/30/24

HCA Process in 2023–2024

- Challenges
 - o Staffing
 - IT/LIS resources
 - Dictionary not standardized by all sites
 - Created standardized antibiotics & panels
 - Unable to standardize organism dictionary
 - $_{\odot}$ AST devices not standardized across HCA
 - Need to update software additional \$\$ or new analyzers needed
 - Rules & flags not standardized across platforms
 - Pharmacy/providers
 - Special requests
 - Increased phone calls to the lab
- 45 | CE Credit Deadline: 09/30/24

- We are in a better place
 - Standardized cascade &
 AST reporting for the enterprise
 - Great Laboratory, Pharmacy & IT/LIS collaboration/alignment
 - ✓ Aligned in antibiotic stewardship

HCA Standardized Cascade Rules – Goals

Goals

Establish a standard set of cascade rules that will be implemented across all HCA facilities

Ensure appropriate antibiotics are tested for susceptibilities

Report results that will encourage use of the most effective & narrow-spectrum antibiotic

Display susceptibility results that help clinicians provide the best patient care

- (SUSCEPTIBILITY,N802 and XN15) Pseudomonas aeruginosa sensitivities:
- CEFEPIME - S (4)
- CIPROFLOXACIN - I (2)
- LEVOFLOXACIN - R (4)
- PIPERACILLIN/TAZOBACTAM - S (<=4)
- TOBRAMYCIN - S (<=1)
- (SUSCEPTIBILITY,N802 and XN15) Escherichia coli sensitivities:
- AMOXICILLIN/CLAVULANATE - R (>=32)
- AMPICILLIN/SULBACTAM - R (>=32)
- CEFTRIAXONE - S (<=0.25)
- CEFOXITIN - S (<=4)
- CIPROFLOXACIN - S (<=0.06)
- GENTAMICIN - S (<=1)
- LEVOFLOXACIN - S (<=0.12)
- SULFAMETHOXAZOLE/TRIMETHOPRIM - R (>=320)

HCA Standardized Cascade Rules – Initial Steps

Gram-negative rods – Enterobacterales

Enterobacterales	iprofloxacin/Levofloxacin: Suppress for urine isolates								
ESBL & CRE	Ciprofloxacin/Levofloxacin: Do not suppress for urine isolates								
	Non-urine isolates: Suppress cefazolin, ceftriaxone, cefoxitin, cefepime, piperacillin/tazobactam, aztreonam, ampicillin, ampicillin/sulbactam								
	Urine isolates: suppress cefazolin, ceftriaxone, cefoxitin, aztreonam, ampicillin, ampicillin/sulbactam								
	Tetracycline: Routinely report								
CRE	Report ceftazidime/avibactam & meropenem/vaborbactam								
Ertapenem	Report if ertapenem is I or R & meropenem is S								

Gram-negative rods – Non-fermenter

	Meropenem: Report when cefepime or piperacillin/tazobactam is I/R					
Pseudomonas aeruginosa	Tobramycin: Test by KB when cefepime OR piperacillin/tazobactam is I/R					
	Ceftolozane/tazobactam: Report when I/R to cefepime & ceftazidime & piperacillin/tazobactam & meropenem					
	Ceftazidime/avibactam: Report when I/R to cefepime & ceftazidime & piperacillin/tazobactam & meropenem & ceftolozane/tazobactam					
	Imipenem/relebactam: report when I/R to meropenem & ceftolozane/tazobactam & ceftazidime/avibactam					
	Amikacin: Suppress for non-urine isolates					
Burkholderia cepacia	Report TMP/SMX, ceftazidime & meropenem routinely by Etest					
Other Non- Enterobacterales	Report cefepime, gentamicin, piperacillin/tazobactam & TMP/SMX routinely by Etest					

Gram-positives

Methicillin-resistant <i>S. aureus</i> (MRSA)		Sterile sources: Routinely report							
	Linezolid	Non-sterile sources: Report when TMP/SMX is I/R or when tetracycline is I/R							
	Daptomycin	Sterile sources: Routinely report							
Enterococcus	Linezolid	Routinely report on sterile sources							
		For all other sources, report when ampicillin is I/R or when vancomycin is I/R							
	Daptomycin	Report when ampicillin is I/R or when vancomycin is I/R							
		Do not report on isolates from respiratory sources							

Challenges

- HCA facilities use 1 of 3 AST panels/cards: Vitek, MicroScan MIC & MicroScan Combo
- IT support for rule building & troubleshooting
- Different levels of antimicrobial stewardship support & initiatives
- Facilities with existing cascade rules more or less restrictive than others
- Gaps in communication

Future State

- Measuring the impact
- Feedback from frontline stewardship teams
- Requests for changes
- Continued collaboration to update breakpoints & AST panels/cards
- Make updates when necessary based on antimicrobial stewardship goals, resistance rates & pharmacy formulary

Interdisciplinary Collaboration

Source: HCA Healthcare. Not for reuse without permission of HCA Healthcare.

52 | CE Credit Deadline: 09/30/24

Educating Frontline Providers

Emergency Department	Culture call backs Adjusting treatment empirically	
Expectations	Selective reporting & cascade testing Instrumentation limitations	
Errors or delays	Shortage of testing Limitation on susceptibilities	
Reporting	Escalation to leadership or lead steward Real-time submission into tracking platform	

Quality Improvement

Track Issues

Standardized reporting system

* Location Event Occurred	
Central Lab	× 🔻
* Location Event Occurred	
JW Central Lab	× 🔻

- Review trends
 - Gram stains
 - Turn-around-times
 - \circ MDROs

Educate & Optimize

- New hires
- Cascade updates
- IT cross-over from central lab to EHR
- Escalation to leadership

2024 Antibiograms: Creation & Validation

- Need data from antimicrobial susceptibility testing
- Electronic health record limitation (cascade rules)
- Compare with prior year
 - Number of isolates
 - Susceptibility rates
- Organism standardization reporting
 - $_{\odot}\,$ MDROs or organism nomenclature change
 - Removes duplicates
 - 1st organism per patient per year/timeframe (routine/MDRO)
 - Query by organism group (remove duplicates)

Source: HCA Healthcare. Not for reuse without permission of HCA Healthcare.

January – December 2022							(% Sus	ceptib	le						
Data	(A blank box means the drug is not reported for that bacteria)															
							WAT	WEI	SHOLLE	Z	z	Jaciena			TOIN	
	# ISOLATES	AMPICILLIN	CEFAZOLIN	CEFTRIAXONE	CEFTAZIDIME	CEFEPIME	AMP/ SULBAG	PIP/TAZOBAC	MEROPENEM	CIPROFLOXAC	LEVOFLOXACI	GENTAMICIN	TOBRAMYCIN	AMIKACIN	NITROFURAN	TMP/SMX
Escherichia coli	510	50	74	88			59	97	100	74	69	90	91	100	97	72
Klebsiella pneumoniae	186		74	83			68	89	100	80	72	90	88	96	27	82
Proteus mirabilis	104	80	83	98			92	100	100	81	81	95	96			86
Enterobacter cloacae	48			71		98	1	79	100	94	92	100	100		45	92
Klebsiella (Enterobacter) aerogenes	°39			74		100		79	100	97	92	97	97			100
Serratia marcescens	31			94					100	94	94	97	71			100
Morganella morganii	°35			77		91	9	97	100	77	89	97	97			97
Pseudomonas aeruginosa	175					93	1	78	89	87	78	95	99	99		
Acinetobacter baumannii	°39				38		79	45	49	46	46	74	67			59
Stenotrophomonas maltophilia	°39				39						92					85
GRAM POSITIVE	# ISOLATES	PENICILLIN	AMPICILLIN	OXACILLIN	CEFTRIAXONE	ERYTHROMYCIN	LEVOFLOXACIN	GENTAMICIN SYNERGY	STREPTOMYCIN SYNERGY	CLINDAMYCIN	LINEZOLID	NITROFURANTOIN	RIFAMPIN (do not use alone)	TETRACYCLINE	TMP/SMX	VANCOMYCIN
Staph aureus (MRSA only)	177			0		9		97		61			99	87	92	100
Staph aureus (MSSA only)	232			100		56		99		73			100	92	95	100
Staphylococcus epidermidis	99			25		26		90					97		54	100
Strep pneumoniae:	°28					64	100							89	86	100
Meningitis		64			89											
Non-meningitis ^c		100			100											
Enterococcus faecalis	157		99					75	90			99		23		99
Enterococcus faecium	°67		13					97	30			16		13		30
Enterococcus faecium (VRE)	ª47		0					96	13		100	21		7		0
Enterococcus faecium (VSE)	°20		45					100	70			0		30		100

^a Includes combined data from both Chippenham and Johnston-Willis

Antibiotics with ≥ 80% activity can be used for empiric treatment of suspected (or known) pathogen, streamline based on susceptibilities

55

Future Directions for Optimizing Therapy

- Automated comments
 - *H. influenzae*: beta-lactamase negative vs. positive
 - Guidance for interpretation
 - Susceptible-dose dependent (SDD)
 - Vancomycin-resistant Enterococcus (different species)
- Cascade optimization
 - $_{\odot}$ New FDA-approved drugs
 - Turn-around time with results
- Annual CLSI updates

Which of the following best describes the purpose of developing cascade and selective reporting rules in collaboration with microbiology and antimicrobial stewardship teams?

- a. Encourage the use of narrow-spectrum antibiotics
- b. Reduce the risk of treatment failure
- c. Ensure formulary and preferred antibiotics are being tested and reported
- d. All of the above

Which of the following best describes the purpose of developing cascade and selective reporting rules in collaboration with microbiology and antimicrobial stewardship teams?

- a. Encourage the use of narrow-spectrum antibiotics
- b. Reduce the risk of treatment failure
- c. Ensure formulary and preferred antibiotics are being tested and reported
- d. All of the above

References

- Bixby ML, Zheng D, Hirsch EB. Long story short: establishing breakpoints for antimicrobials and 2023 updates. Curr Infect Dis Rep 2024; 26: 47-55.
- Clinical and Laboratory Standards Institute. 2023 Breakpoint Implementation Toolkit (2023 BIT). Available at: https://clsi.org/bit-toolkit/. Accessed 5/6/2024.
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2024.
- Daley P, Garcia D, Inayatullah R, Penney C, Boyd S. Modified Reporting of Positive Urine Cultures to Reduce Inappropriate Treatment of Asymptomatic Bacteriuria Among Nonpregnant, Noncatheterized Inpatients: A Randomized Controlled Trial. *Infect Control Hosp Epidemiol* 2018; 39(7): 814-9.
- HCA Healthcare LSL antibiotic susceptibility testing panels. Feb 2024 version. Not for reuse without permission of HCA Healthcare.
- Heireman L, Vandendriessche S, Coorevits L, et al. Effects of cascade reporting of susceptibility profiles for Enterobacterales on broad-spectrum antibiotics use and resistance. Eur J Hosp Pharm 2022; 29(2): 79-83.
- Hernando K, Waite L, Bairagdar N, et al. A waterfall of susceptibility results: impact of microbiology testing cascade for MDROs. *Diagn Microbiol Infect Dis* 2022; 104(1): 115731.
- Humphries R. AST News Update June 2022: Updating Breakpoints-New Developments from CAP. August 2, 2022. Available at: https://clsi.org/about/blog/ast-news-update-june-2022-updating-breakpoints-new-developments-from-cap/. Accessed 5/6/2024.
- Humphries RM. AST News Update June 2023: New! CLSI M100-Ed33: Updated Aminoglycoside Breakpoints for Enterobacterales and Pseudomonas aeruginosa.
 6/21/2023. Available at: https://clsi.org/about/blog/ast-news-update-june-2023-new-clsi-m100-ed33-updated-aminoglycoside-breakpoints-for-enterobacterales-and-pseudomonas-aeruginosa/. Accessed 5/6/2024.
- Langford BJ, Seah J, Chan A, Downing M, Johnstone J, Matukas LM. Antimicrobial Stewardship in the Microbiology Laboratory: Impact of Selective Susceptibility Reporting on Ciprofloxacin Utilization and Susceptibility of Gram-Negative Isolates to Ciprofloxacin in a Hospital Setting. *J Clin Microbiol* 2016; 54(9): 2343-7.

References, cont.

- Lee CH, et al. Comparative effectiveness of flomoxef versus carbapenems in the treatment of bacteremia due to extended-spectrum beta-lactamase producing Escerichia coli or Klebsiella pneumoniae with emphasis on minimum inhibitory concentration of flomoxef: A retrospective study. Int J Antimicrob Agents. 2015; 46(6): 610-5.
- Liao S, Rhodes J, Jandarov R, DeVore Z, Sopirala MM. Out of Sight-Out of Mind: Impact of Cascade Reporting on Antimicrobial Usage. Open Forum Infect Dis 2020; 7(2): ofaa002.
- Munting A, Damas J, Viala B, et al. Impact of selective reporting of antibiotic susceptibility testing results on meropenem prescriptions for the treatment of Pseudomonas
 aeruginosa infections after 2020 EUCAST criteria update: an observational study in a university hospital. Antimicrob Resist Infect Control 2022; 11(1): 165.
- "Partnering Laboratory with Stewardship to Navigate Breakpoint Updates and Other New CLSI Recommendations to Enhance Clinical Practice," Society of Infectious Diseases Pharmacist, American College of Clinical Pharmacy, and Clinical and Laboratory Standards Institute. <u>https://www.sidp.org/SIDPEC</u>. Accessed 5/10/2024.
- Simon M, Fougnot S, De Monchy P, et al. Impact of selective reporting of antibiotic susceptibility testing results for urinary tract infections in the outpatient setting: a prospective controlled before-after intervention study. *Clin Microbiol Infect* 2023; 29(7): 897-903.
- Tamma PD, Aitken SL, Bonomo RA, et al. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. *Clin Infect Dis.* 2023;, ciad428.
- Tamma PD, Harris PNA, Mathers AJ, Wenzler E, Humphries RM. Breaking down the breakpoints: rationale for the 2022 Clinical and Laboratory Standards Institute revised piperacillin-tazobactam breakpoints against Enterobacterales. *Clin Infect Dis* 2022: ciac688.
- Tamma PD, Harris PNA, Mathers AJ, Wenzler E, Humphries RM. Deconstructing the 2023 Clinical and Laboratory Standards Institute revised piperacillin-tazobactam breakpoints against Pseudomonas aeruginosa. *Clin Infect Dis* 2023: ciad012.
- Vissichelli NC, Orndahl CM, Cecil JA, et al. Impact of cascade reporting of antimicrobial susceptibility on fluoroquinolone and meropenem consumption at a Veterans' Affairs medical center. *Infect Control Hosp Epidemiol* 2022; 43(2): 199-204.
- Yang CC, et al. Discrepancy between effects of carbapenems and flomoxef in treating nosocomial hemodialysis access-related bacteremia secondary to extended spectrum beta-lactamase producing Klebsiella pneumoniae in patients on maintenance hemodialysis. *BMC Infect Dis.* 2012; 12:206.

Thank you...

- Jill Cowper, PharmD, BCIDP
- Laura Cwengros, PharmD, BCIDP
- Reginalde Philogene, MT(M)ASCP

jill.cowper@healthtrustpg.com laura.cwengros@hcahealthcare.com reginalde.philogene@hcahealthcare.com

