Barbiturates are Back: An Update on the Inpatient Management of Acute Alcohol Withdrawal

A presentation for HealthTrust Members May 15, 2024

Ali Goforth, PharmD PGY1 Pharmacy Resident TriStar Medical Center

Preceptor: Erica Roman, PharmD, BCPS Cardiovascular/Critical Care Clinical Pharmacist TriStar Centennial Medical Center

Disclosures

- Neither the speaker, nor her preceptor, or planners for this educational activity have relevant financial relationships to disclose with ineligible companies.
- Note: This program may contain the mention of suppliers, brand products, services, or drugs presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes only and should not be perceived as an endorsement of any particular supplier, brand, product, service or drugs.
- The content presented is for informational purposes only & is based upon the presenter(s) knowledge & opinion. It should not be relied upon without independent consultation with & verification by appropriate professional advisors. Individuals & organizations shall have sole responsibility for any actions taken in connection with the content herein. HealthTrust, the program presenter(s) & their employers expressly disclaim any & all warranties as to the content as well as any liability resulting from actions or omissions of any individual or organization in reliance upon the content

Objectives for Pharmacists & Nurses

- Recall the pathophysiology of acute alcohol withdrawal and associated complications
- Identify the preferred therapeutic target for the management of a patient in acute alcohol withdrawal
- Recognize literature-based recommendations for pharmacologic agents in the treatment of acute alcohol withdrawal

Alcohol Withdrawal Syndrome

Acute Alcohol Withdrawal

- Intentional or unintentional abrupt reduction or cessation of long-term alcohol consumption
 - $_{\odot}\,$ Impacts 8% of patient hospitalized with alcohol use disorder
 - Up to 15% of those patients will progress to severe alcohol withdrawal
- Associated with increased morbidity, mortality, length-of-stay, and cost

Risk Factors for Alcohol Withdrawal Syndrome

- Associated with increased risk:
 - $\circ\,$ Consuming more alcohol
 - Combing with medications such as barbiturates or benzodiazepines
 - \circ Prior withdrawal
- Screening Tool to Determine Risk:
 - Prediction of Alcohol Withdrawal Severity Scale (PAWSS)

Pathophysiology of Acute Alcohol Withdrawal

Source: Jesse S, et al. Acta Neurol Scand. 2017.

Assessment Question #1

Which two neurotransmitters are primarily involved in alcohol withdrawal syndrome?

- A. Glutamate
- B. Acetylcholine
- C. Gamma-aminobutyric acid (GABA)
- D. Serotonin

Assessment Question #1 – Correct Response

Which two neurotransmitters are primarily involved in alcohol withdrawal syndrome?

- A. Glutamate
- B. Acetylcholine
- C. Gamma-aminobutyric acid (GABA)
- D. Serotonin

Clinical Presentation of Acute Alcohol Withdrawal

 Signs and symptoms occur ~6-48 hours after last alcohol consumption

CONFIDENTIAL - Contains proprietary information. Not intended for external distribution.

Source: Farrokh S, et al. Neurocrit Care. 2021 Apr;34(2):593-607.

Development of Alcohol Withdrawal Complications

Minor Withdrawal (~6 hours)

- Anxiety, agitation
- Tremors, restlessness, insomnia
- Diaphoresis, palpitations

Alcoholic Hallucinations (~8 to 12 hours)

- Visual
- Auditory
- Tactile

Alcohol Withdrawal Seizures (~12 to 48 hours)

- · Risk increases with each withdrawal episode
- Generalized tonic-clonic

Delirium tremens (~2 to 4 days)

- Severe agitation
- Disorientation, hallucinations
- Fever, tachycardia, hypertension, sweats

Therapeutic Targets in Acute Alcohol Withdrawal

Clinical Institute Withdrawal Assessment – Alcohol Revised (CIWA-Ar)

10-item assessment tool that quantifies the severity of alcohol withdrawal

Pros	Cons
 Symptom-driven Guides treatment for many AWS protocols 	 Cannot be utilized if history of AWS seizures/DT Cannot predict patients at- risk Labor intensive on nursing Impacted by comorbidities
AWS: alcohol withdrawal syndrome: DT: delirium tremens	

Richmond Agitation Sedation Scale (RASS)

Assessment tool that measures agitation and sedation in ICU patients

	Pros	Cons
•	Can utilize if unable to	Limited to ICU patients
	assess symptoms	
•	Less labor intensive	
ICU:	intensive care unit	

Assessment Question #2

What is the preferred therapeutic target for managing acute alcohol withdrawal?

- A. CIWA-Ar
- B. RASS
- C. Glascow-Coma Scale
- D. A & B

Assessment Question #2 – Correct Response

What is the preferred therapeutic target for managing acute alcohol withdrawal?

- A. CIWA-Ar
- B. RASS
- C. Glascow-Coma Scale
- D. A & B

Treatment of Acute Alcohol Withdrawal

2020 ASAM Clinical Practice Guidelines

Active withdrawal:

- First-Line: Benzodiazepines
 - Mechanism of action: Bind to the benzodiazepine specific site on the GABA-A receptor, which increases the influx of chloride ions and subsequently leads to an inhibitory effect (similar to alcohol)
 - Increases the frequency that the channel is opening
 - Requires presence of pre-synaptic GABA
 - Long-acting preferred (diazepam, chlordiazepoxide, lorazepam)

Front Loading Strategy

- High doses of longer-acting benzodiazepines
 - $_{\odot}\,$ Achieve initial sedation quickly
 - Self-tapering effect
 - $\circ\,$ Recommended for those in severe withdrawal

	Pros	Cons
•	Reduces risk of complications	Increased risk of sedation and respiratory depression
•	dose	respiratory depression
•	Shortens duration of withdrawal symptoms	

Front Loading Example Regimens

Medication	Dosing Strategy
Diazepam	 10-20 mg every 1-2 hr until patient reaches adequate sedation 5-10 mg IV every 5-10 minutes until patient reaches adequate sedation
Lorazepam	 2-4 mg IV every 15-20 minutes until patient reaches adequate sedation
Chlordiazepoxide	 100 mg every 1-2 hr until patient reaches adequate sedation

Fixed Dosing Strategy

- Specific amount of benzodiazepines are administered at "fixed" intervals
 - Can give additional doses if patients symptoms warrant it

	Pros		Cons
•	Beneficial for patients with history of seizures or delirium tremens	•	Increased utilization of benzodiazepines
•	Beneficial in patients in whom you cannot assess symptoms Less demand on nursing		

Fixed Dosing Example Regimens

Medication	Dosing Strategy
Diazepam	 10 mg every 6 hours x 4 doses 5 mg every 6 hours x 8 doses
Lorazepam	 2 mg every 6 hours x 4 doses 1 mg every 6 hours x 8 doses
Chlordiazepoxide	 50 mg every 6 hours x 4 doses 25 mg every 6 hours x 8 doses

*tapered every 2-3 days once stabilized (last 7-10 days) *additional doses can be given if symptoms not controlled

Symptom-Triggered Strategy

• Benzodiazepines given in response to patient symptoms

Pros	Cons
 Decreased total amount of benzodiazepines administered Decreased risk of adverse effects (sedation, respiratory depression) 	 Requires close monitoring (CIWA-Ar to assess need for treatment) Requires additional training of staff Cannot be used in patients with history of seizures or delirium tremens

Symptom-Triggered Example Regimens

Medication	Dosing Strategy
Diazepam	• 5-10 mg once
Lorazepam	 1-2 mg once
Chlordiazepoxide	 25-100 mg once
*If CIWA ≥ 8 *Reassessed every hour and re-dosed until CIWA <8	

Concerns with Benzodiazepines

- Paradoxical agitation
- Delirium
- Respiratory depression
- Benzodiazepine-resistance

Benzodiazepine Resistance

- Benzodiazepines are dependent on endogenous GABA
 - GABA deficiency
 - Down-regulation, conformational changes of GABA receptors
- Dosing thresholds to classify:
 - $_{\odot}\,$ First hour of treatment
 - Diazepam: 50 mg
 - Lorazepam: 10 mg
 - $\circ\,$ Three to four hours into treatment
 - Diazepam: 200 mg
 - Lorazepam: 40 mg
- Leads to increased ICU admission/mechanical ventilation

Common Adjunctive Therapies

Control alcohol withdrawal	 Carbamazepine Gabapentin Valproic acid Phenobarbital Continuous IV sedation (ie. propofol)
Control autonomic hyperactivity	 Alpha-2 adrenergic agonist (dexmedetomidine, clonidine) Beta-blockers
Supportive care	 Thiamine (prevent Wernicke encephalopathy) Folate (hyperhomocysteinemia) Fluid and electrolyte replacement Caloric support

Phenobarbital in Acute Alcohol Withdrawal

Phenobarbital

Barbiturate

- Mechanism of action: Binds to an allosteric site on the GABA-A receptor, which prolongs the duration that the CI- channels are open and potentiates the GABA-mediated inhibitory effects. It also antagonizes glutamate activity
 - Increases the duration that the channel is open
- Pharmacokinetics:
 - Onset of action: 5 minutes
 - Duration: >6 hours
 - Half-life elimination: ~3-4 days
- Recommendations from the guidelines:
 - "Phenobarbital should only be used by clinicians experienced with its use due to narrow therapeutic index and side effects"
 - Monotherapy or adjunctive therapy

Phenobarbital Side Effect Profile/Considerations

- Hypotension
- Medication-induced respiratory failure
 - $\circ\,$ Cross-tolerance in patients with alcohol abuse
 - Tolerate much higher doses
- Oversedation
- Drug-drug interactions
 - \circ Strong CYP3A4 inducer
 - Weak inducer (CYP1A2, CYP2A6, CYP2B6, CYP2C9)
- Contraindications
 - Pregnancy
 - Marked hepatic impairment

Proposed Benefits of Phenobarbital

- Rapid onset of action
- Long half-life
 - $_{\odot}\,$ Uptitration to the rapeutic dose
 - $\,\circ\,$ Auto-taper off
- Works synergistically with benzodiazepines
- Impacts both GABA and glutamate
- Can obtain levels if concerned about toxicity
- Available by mouth/per tube, intravenously, intramuscularly
- Low cost

Phenobarbital Dosing Strategies

- Low-intermittent dosing
- Front-loaded dosing
 - Rapidly increases serum phenobarbital concentration
 - $\,\circ\,$ Provides longer duration of action

Rosenson J, Clements C, Simon B, et al. Phenobarbital for acute alcohol withdrawal: a prospective randomized double-blind placebo-controlled study. *J Emerg Med.* 2013 Mar; 44 (3):592-598.e2. doi:10.1016/j.jemermed.2012.07.056

Population	Patients with acute AWS presenting to the ED
Interventions	 Institutional-symptom triggered lorazepam protocol PLUS Single-dose IV phenobarbital (n=51) 10 mg/kg in 100 mL normal saline Placebo (n=51) 100 mL normal saline
Endpoints	 Primary: Initial level of hospital admission Secondary: Use of continuous lorazepam infusion Time from hospital admission to discharge Total amount of lorazepam used Adverse effects
Results	 Primary: ICU admission: 8% versus 25% (95% CI 4-32) Secondary: Decreased use of continuous lorazepam infusion Decreased total lorazepam required No differences in adverse effects
Conclusion	Single-dose of IV phenobarbital led to decreased ICU admission rates and decreased use of continuous lorazepam infusions and was not associated with increased adverse effects

Tidwell WP, Thomas TL, Pouliot JD, et al. Treatment of Alcohol Withdrawal Syndrome: Phenobarbital vs CIWA-Ar Protocol. *Am J Crit Care.* 2018 Nov; 27(6): 454-460. DOI: 10.4037/ajcc2018745.

Population	Medical ICU patients treated for the onset or prevention of AWS
Interventions	 Symptom-triggered benzodiazepine protocol (n=60) Phenobarbital protocol (n=60)
Endpoints	 Primary: ICU length of stay Secondary: Hospital length of stay Incidence of invasive mechanical ventilation Use of adjunctive pharmacotherapy
Results	 Decreased ICU length of stay (2.4 vs 4.4 days; p<0.001) Decreased hospital length of stay (4.3 vs 6.9 days; p=0.004) Decreased incidence of mechanical ventilation (2% vs 23%; p=<0.001) Decreased use of adjunctive agents (dexmedetomidine) Decreased total lorazepam equivalents (11.3 vs 35.2, p<0.001)
Conclusion	Phenobarbital protocol for the treatment of alcohol withdrawal was an effective alternative to the symptom-triggered benzodiazepine protocol

Treatment of Alcohol Withdrawal Syndrome: Phenobarbital vs CIWA-Ar Protocol

Lorazepam 1 mg IV q4hr PRN agitation

CONFIDENTIAL - Contains proprietary information. Not intended for external distribution.

Source: Tidwell WP, et al. Am J Crit Care. 2018 Nov; 27(6): 454-460.

Shah P, Stegner-Smith KL, Rachid M, et al. Front-Loaded versus Low-Intermittent Phenobarbital Dosing for Benzodiazepine-Resistant Severe Alcohol Withdrawal. *J Med Toxicol.* 2022 Jul; 18 (3): 198-204. DOI: 10.1007/s13181-022-00900-8.DOI: 10.1007/s13181-022-00900-8.

Population	Adult patients in the medical ICU with severe benzodiazepine-resistant AWS
Interventions	Lorazepam 8 mg IV push every 5 minutes x 3 doses CIWA >20 Low-intermittent phenobarbital doses (n=41) Front-loaded phenobarbital doses (n=46)
Endpoints	 Primary: Incidence of mechanical ventilation Secondary: ICU length of stay Time to control of AWS post phenobarbital administration Duration of mechanical ventilation Lorazepam requirements in the 24 h pre- and post-phenobarbital administration Need for adjunctive sedative infusions
Results	 Decreased incidence of mechanical ventilation (28% vs 63%; OR 4.4 (95% CI 1.8-10.9) Decreased benzodiazepine requirements (median 86 mg [IQR 24-197] vs 228 mg [IQR 115-298]; p<0.01) Decreased need for any continuous sedative infusion (OR 7.7 [95% CI 1.6-27], p<0.01) Decreased transient hypotension (22% vs 56%, p=0.001) No difference in respiratory failure or ICU LOS
Conclusion	 Front-loaded phenobarbital dosing was associated with significantly lower mechanical ventilation incidence, lower benzodiazepine requirements, and less continuous sedative use

Front-Loaded versus Low-Intermittent Phenobarbital Dosing for Benzodiazepine-Resistant Severe Alcohol Withdrawal

- Used as adjunct if CIWA-Ar score > 20 despite 3 doses of IV lorazepam
 - \circ Front-loaded
 - 10 mg/kg (actual body weight) IV infusion over 30 minutes
 - Could receive additional doses (physician and pharmacist judgement)
 - o Low-intermittent
 - 260 mg IV push x 1
 - 130 mg IV push every 15 minutes PRN (Maximum of 8 doses)
 - Maximum cumulative dose: 1300 mg
- CIWA-guided lorazepam protocol resumed after completion of phenobarbital protocol

Kessel KM, Olson LM, Kruse DA, et al. Phenobarbital Versus Benzodiazepines for the Treatment of Severe Alcohol Withdrawal. Annals of Pharmacotherapy; 2024: 1-9. doi: 10.1177/10600280231221241.

Population	 Patients admitted to the progressive unit or ICUs with severe AWS
Interventions	 Phenobarbital (n=126 encounters) Benzodiazepines (n=98 encounters)
Endpoints	 Primary: hospital length of stay Secondary: Progressive or ICU length of stay Incidence of adjunctive pharmacotherapy Incidence/duration of mechanical ventilation
Results	 Shorter median hospital length of stay (2.8 vs 4.7 days; p <0.0001) Shorter median progressive/ICU length of stay (0.7 vs 1.3 days; p<0.0001) Lower incidence of dexmedetomidine (6 vs 53 patients; p<0.0001) and antipsychotic initiation (7 vs 36 patients; p<0.0001) Fewer patients received new mechanical ventilation (1 vs 6, p=0.045) Similar median duration of mechanical ventilation (1.2 vs 1.6 days; p=1.00) Median total phenobarbital dose (952.7 mg (13.2 mg/kg) vs 978.8 mg (13.7 mg/kg); p=0.43
Conclusion	A fixed-dosed strategy of phenobarbital for severe AWS was associated with a decreased hospital length of stay when compared to benzodiazepines.

Phenobarbital Versus Benzodiazepines for the Treatment of Severe Alcohol Withdrawal

IBW: ideal body weight; mg: milligram; kg: kilogram; IM: intramuscularly; PO: by mouth q:every; hrs: hours; HR: heart rate; SBP: systolic blood pressure

Source: Kessel KM, et al. Annals of Pharmacotherapy; 2024: 1-9.

CONFIDENTIAL - Contains proprietary information. Not intended for external distribution.

Literature Conclusions

- Phenobarbital appears to be associated with:
 - Decreased ICU and hospital length of stay
 - Decreased need for continuous IV sedation
 - Decreased need for mechanical ventilation
 - Minimal adverse events
- Phenobarbital is safe and effective for alcohol withdrawal treatment as monotherapy or adjunctive therapy
 - $_{\odot}\,$ History of seizures or delirium tremens with AWS
 - Severe alcohol withdrawal
 - Benzodiazepine-resistant alcohol withdrawal

Assessment Question #3

True or False – The current available literature supports the use of phenobarbital for the treatment of acute alcohol withdrawal?

- A. True
- B. False

Assessment Question #3 – Correct Response

True or False – The current available literature supports the use of phenobarbital for the treatment of acute alcohol withdrawal?

A. True

B. False

Remaining Gaps

- Ideal dosing strategy remains questionable
 - Multiple dosing strategies/protocols that exist throughout the literature
 Weight to use in obesity remains unknown (if weight-based dosing)
- Majority of literature in ICU setting
 - $\,\circ\,$ Caution for general ward patients with decreased monitoring

References

- Jesse S, Brathen G, Ferrara. Alcohol withdrawal syndrome: mechanisms, manifestations, and management. Acta Neurol Scand. 2017. Jan; 135(1): 4-16. doi: 10.1111/ane.12671
- Maldonado JR, Sher Y, Ashouri JF, et al. The "Prediction of Alcohol Withdrawal Severity Scale" (PAWSS): systematic literature review and pilot study of a new scale for the prediction of complicated alcohol withdrawal syndrome. Alcohol. 2014;48:375–390. doi: 10.1016/j.alcohol.2014.01.004.
- Mayo-Smith MF. Pharmacological management of alcohol withdrawal. A meta-analysis and evidence-based practice guideline. American Society of Addiction Medicine Working Group on Pharmacological Management of Alcohol Withdrawal. JAMA. 1997 Jul 9;278(2):144-51. doi: 10.1001/jama.278.2.144.
- Farrokh S, Roels C, Owusu KA, Nelson SE, Cook AM. Alcohol Withdrawal Syndrome in Neurocritical Care Unit: Assessment and Treatment Challenges. Neurocrit Care. 2021 Apr;34(2):593-607. doi: 10.1007/s12028-020-01061-8.
- The ASAM clinical practice guideline on alcohol withdrawal management. J Addict Med. 2020;14(3S, suppl 1):1-72. doi:10.1097/ADM.000000000000668
- Shah P, Stegner-Smith KL, Rachid M, et al. Front-Loaded versus Low-Intermittment Phenobarbital Dosing for Benzodiazepine-Resistant Severe Alcohol Withdrawal. J Med Toxicol. 2022 Jul; 18 (3): 198-204. DOI: 10.1007/s13181-022-00900-8.DOI: 10.1007/s13181-022-00900-8.
- Hack JB, Hoffmann RS, Nelson LS. Resistant alcohol withdrawal: does an unexpectedly large sedative requirement identify these patients early? J Med Toxicol. 2006 Jun;2(2):55-60. doi: 10.1007/BF03161171.
- Phenobarbital. Lexicomp. Wolters Kluwer Health, Inc. Riverwoods, IL. Accessed March 26th, 2024.. http://online.lexi.com
- Oks M, Cleven KL, Healy L, Wei M, Narasimhan M, Mayo PH, Kohn N, Koenig S. The Safety and Utility of Phenobarbital Use for the Treatment of Severe Alcohol Withdrawal Syndrome in the Medical Intensive Care Unit. J Intensive Care Med. 2020 Sep;35(9):844-850. doi: 10.1177/0885066618783947.
- Rosen J, Clements C, Simon B, et al. Phenobarbital for acute alcohol withdrawal: a prospective randomized double-blind placebo-controlled study. J Emerg Med. 2013 Mar; 44 (3):592-598.e2. doi:10.1016/j.jemermed.2012.07.056
- Tidwell WP, Thomas TL, Pouliot JD, et al. Treatment of Alcohol Withdrawal Syndrome: Phenobarbital vs CIWA-Ar Protocol. Am J Crit Care. 2018 Nov; 27(6): 454-460. DOI: 10.4037/ajcc2018745.
- Kessel KM, Olson LM, Kruse DA, et al. Phenobarbital Versus Benzodiazepines for the Treatment of Severe Alcohol Withdrawal. Annuals of Pharmacotherapy; 2024: 1-9. doi: 10.1177/10600280231221241.

Contact:

Ali Goforth

P: 629-212-5190

E: Ali.Goforth@hcahealthcare.com

Thank you!

1100 Dr. Martin L. King Jr. Boulevard, Suite 1100 Nashville, TN 37203

healthtrustpg.com