Direct Oral Anticoagulants in Chronic Liver Disease: Stirring the Clotroversy

A Presentation for HealthTrust Members February 7, 2024

Greg Taylor, PharmD

PGY2 Internal Medicine Resident

Princeton Baptist Medical Center

Nathan A. Pinner, PharmD, BCPS Preceptor

Disclosure

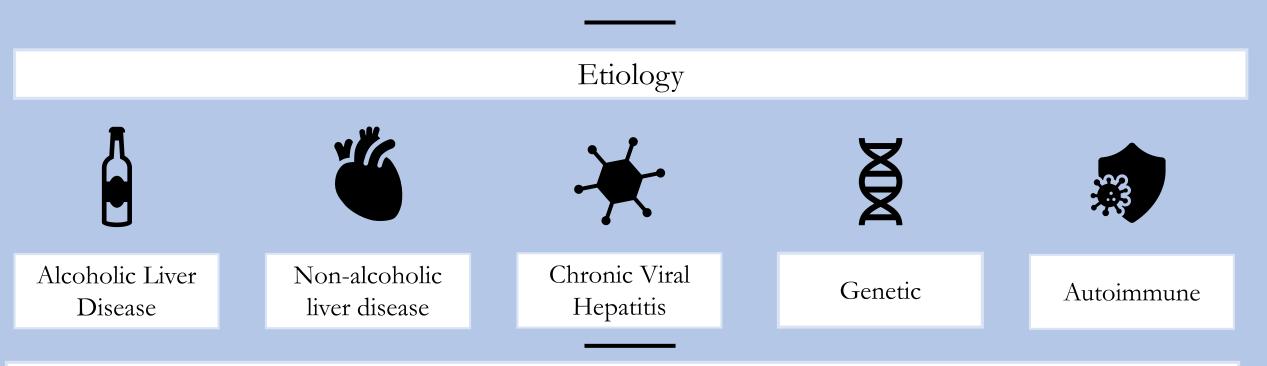
The presenter and their preceptor have no financial relationships with any commercial interests pertinent to this presentation.

This program may contain the mention of drugs, brands or suppliers presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes and should not be perceived as an endorsement of any particular drug, brand or supplier.

Note: The content presented is for informational purposes only & is based upon the presenter(s) knowledge & opinion. It should not be relied upon without independent consultation with & verification by appropriate professional advisors. Individuals & organizations shall have sole responsibility for any actions taken in connection with the content herein. HealthTrust, the program presenter(s) & their employers expressly disclaim any & all warranties as to the content as well as any liability resulting from actions or omissions of any individual or organization in reliance upon the content.

2

3


Recall the pathophysiology of chronic liver disease and its relationship to both elevated risk of thromboembolic events and bleeding.

Identify the pharmacokinetics of key direct oral anticoagulants (DOACs) and their relation to the effects of chronic liver disease.

Recognize which subgroups of patients with chronic liver disease have data for the safe and efficacious use of direct oral anticoagulants in thromboembolic conditions.

Chronic Liver Disease (CLD)

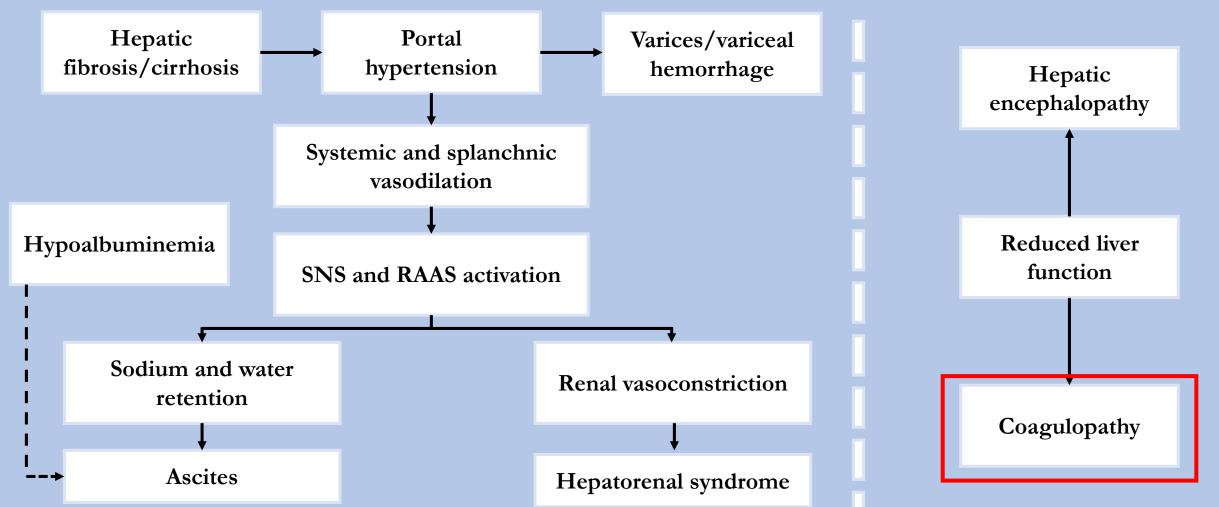
Deterioration of liver function for >6 months

Cause is not addressed \rightarrow continued death of hepatocytes \rightarrow hepatic fibrosis \rightarrow cirrhosis

Source: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan

2018 Centers for Disease Control Health Statistics

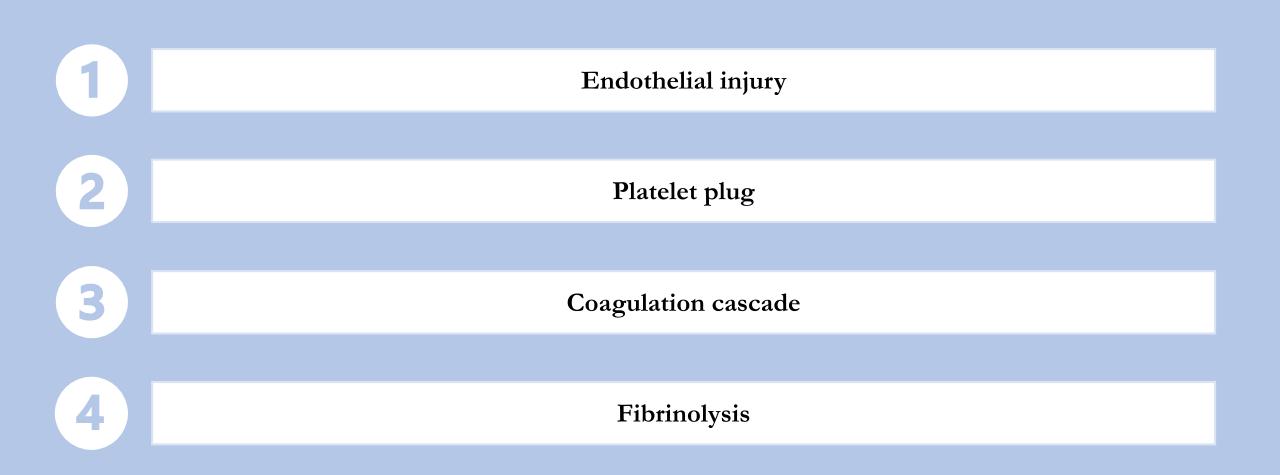
4.5 million adults diagnosed with liver disease (1.8% of the population)


Associated with >56,000 deaths/year (9th leading cause of death in the U.S.)

Mean increase of \sim \$9,500/year for every patient with chronic liver disease

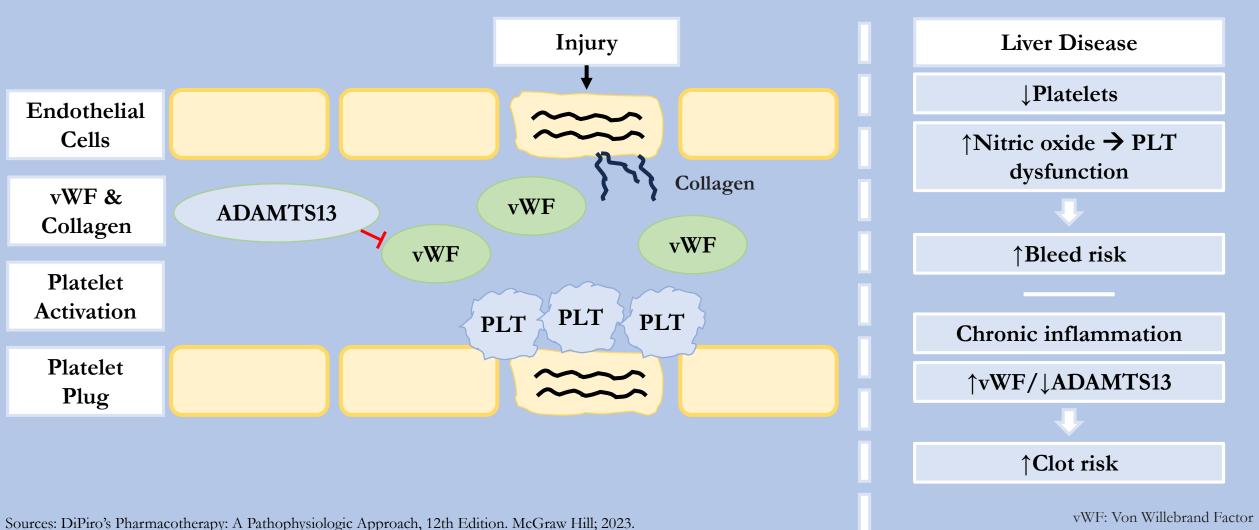
Source: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan J Hepatol. 2023 Aug;79(2):516-537.

Complications of CLD



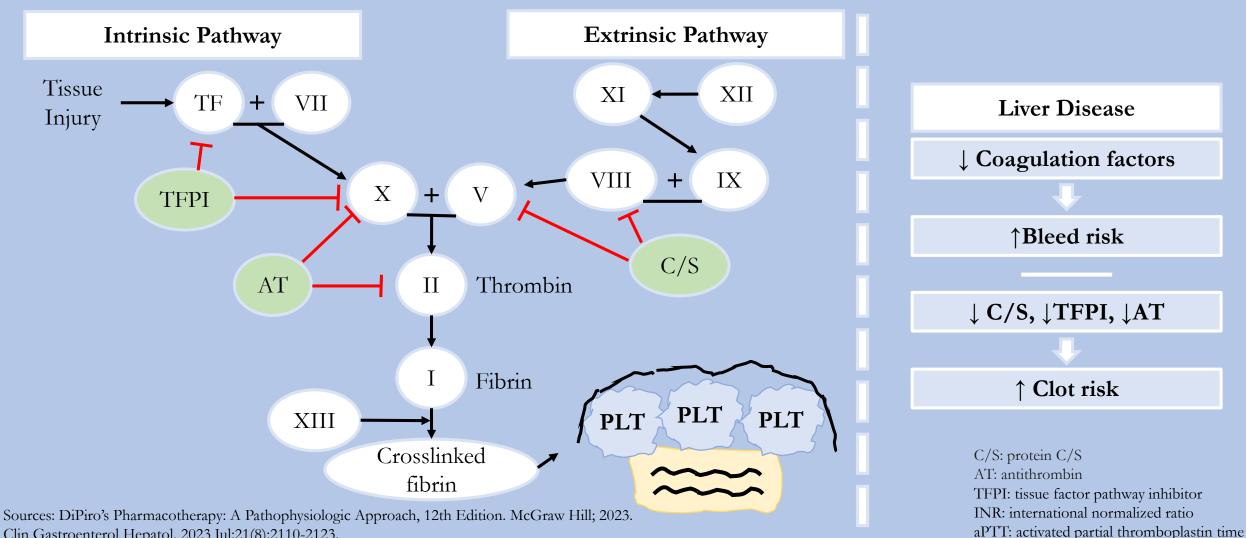
Sources: DiPiro's Pharmacotherapy: A Pathophysiologic Approach, 12th Edition. McGraw Hill; 2023. Clin Gastroenterol Hepatol. 2023 Jul;21(8):2110-2123.

SNS: sympathetic nervous system RAAS: renin angiotensin aldosterone system

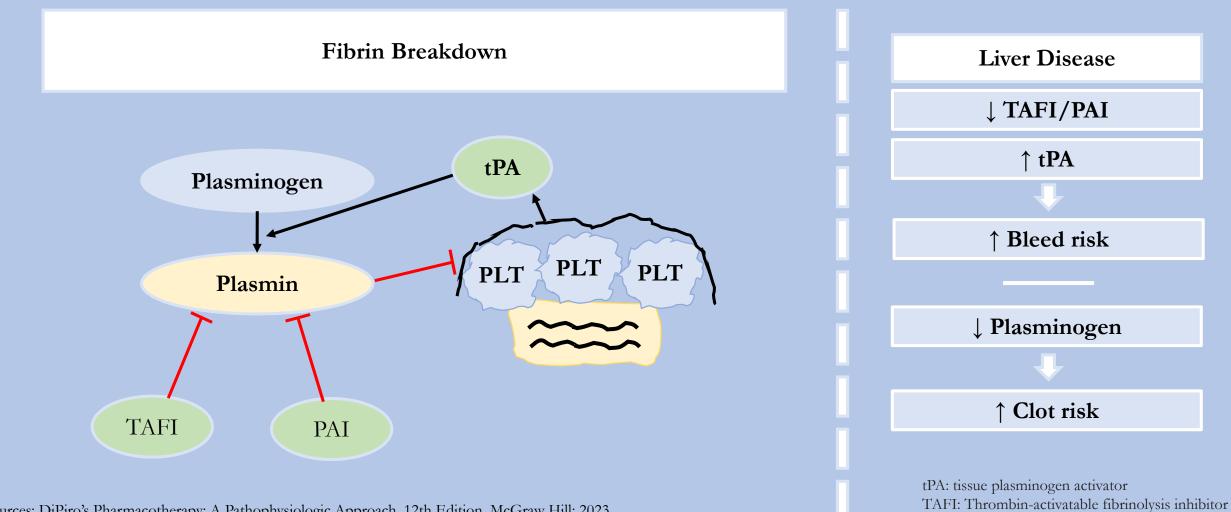

Coagulopathy of CLD

Hemostasis Overview

Sources: DiPiro's Pharmacotherapy: A Pathophysiologic Approach, 12th Edition. McGraw Hill; 2023. Clin Gastroenterol Hepatol. 2023 Jul;21(8):2110-2123.


Endothelial Injury > Platelet Plug

PLT: platelet

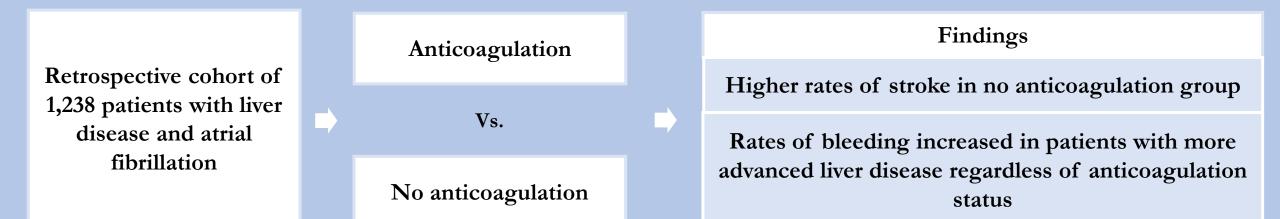

Clin Gastroenterol Hepatol. 2023 Jul;21(8):2110-2123.

Coagulation Cascade

Clin Gastroenterol Hepatol. 2023 Jul;21(8):2110-2123.

Fibrinolysis

PAI: plasminogen activator inhibitor


Sources: DiPiro's Pharmacotherapy: A Pathophysiologic Approach, 12th Edition. McGraw Hill; 2023. Clin Gastroenterol Hepatol. 2023 Jul;21(8):2110-2123.

Pathophysiology Takeaway

	Thrombosis Risk	Bleed Risk		
Platelets	↑ vWF/↓ ADAMTS13 activity	↓ Platelets/function		
Coagulation	↓ Endogenous anticoagulants	\downarrow Coagulation factors		
Fibrinolysis	↓ Plasminogen	↑ tPA activity		
	Individualized Risk			
Thromboemboli	c risk	Bleed risk		
ce: Clin Gastroenterol Hepatol. 2023 Jul;21(8):2110-2123.			

Clinical Evidence of Clot vs. Bleed

"Auto-anticoagulation"	Atrial fibrillation	2.5 times higher risk of ischemic stroke
in cirrhosis	Venous thromboembolism	2 times higher risk of venous thromboembolism

Assessment Question #1

TRUE or FALSE. JJ is a 55-year-old male with HTN, atrial fibrillation, cirrhosis (Child-Pugh B), and alcoholism. His INR is found to be 2.1. He is at an elevated bleed risk but not an elevated clot risk.

Assessment Question #1: Correct Response

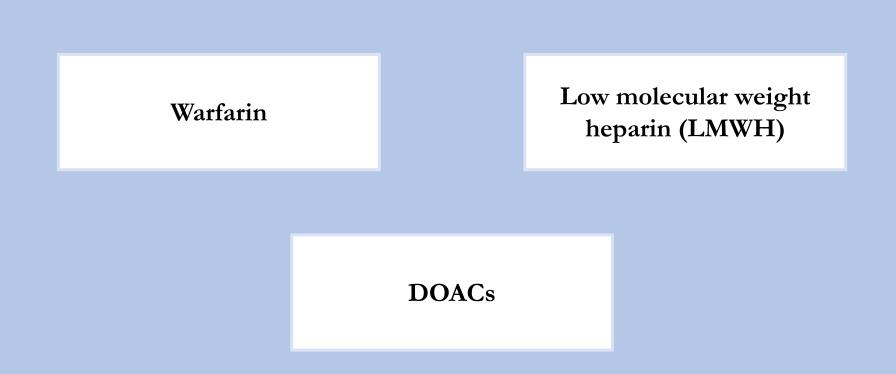
TRUE or FALSE. JJ is a 55-year-old male with HTN, atrial fibrillation, cirrhosis (Child-Pugh B), and alcoholism. His INR is found to be 2.1. He is at an elevated bleed risk but not an elevated clot risk.

FALSE

Assessment Question #2

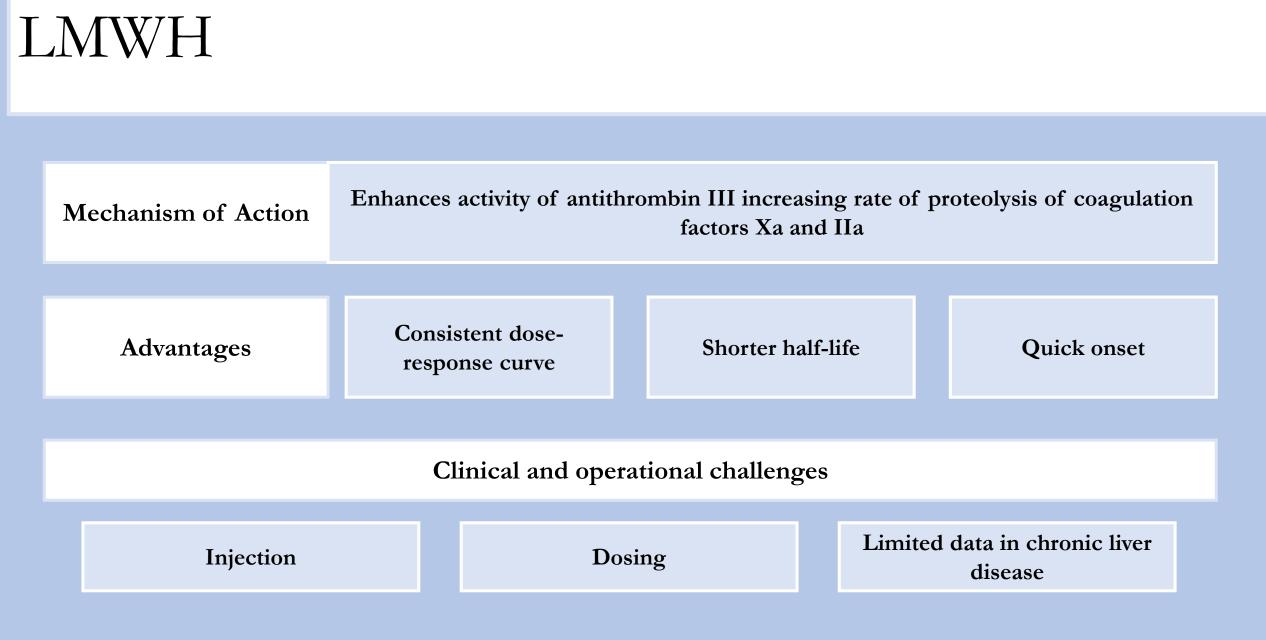
Which of the following statements are true regarding the pathophysiology of coagulopathy in chronic liver disease?

- a. vWF production is decreased resulting in decreased platelet plug formation
- b. Chronic inflammation leads to decreased production of ADAMTS13 increasing clot risk
- c. Protein C/S production is decreased resulting in an decreased clot risk
- d. Platelets are dysfunctional causing an increased propensity for platelet plug formation

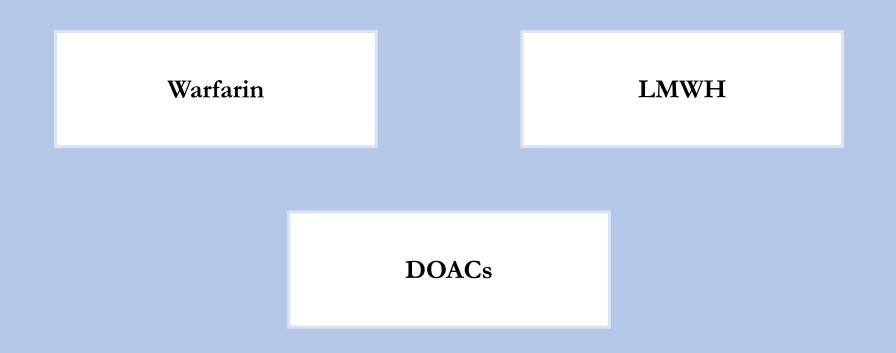

Assessment Question #2: Correct Response

Which of the following statements are true regarding the pathophysiology of coagulopathy in chronic liver disease?

- a. vWF production is decreased resulting in decreased platelet plug formation
- b. Chronic inflammation leads to decreased production of ADAMTS13 increasing clot risk
- c. Protein C/S production is decreased resulting in an decreased clot risk
- d. Platelets are dysfunctional causing an increased propensity for platelet plug formation


Anticoagulation in Chronic Liver Disease

Anticoagulation Options

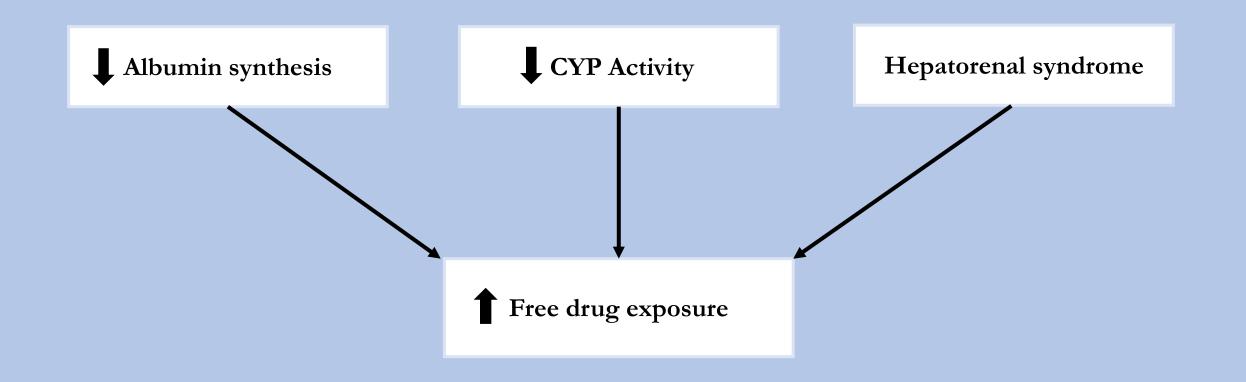

Warfarin

Mechanism of Action	Inhibits vitamin K epoxide reductase which reduces the formation of coagulation factors II, VII, IX, and X in addition to protein C/S					
Advantages		Can be monitored			Lon	iger half-life
	Cli	nical and ope	erational challe	enges		
Monitoring		Adherence				a in chronic liver isease
	Drug-drug int	teractions		INR g	oal	
e: J Am Coll Cardiol. 2018 May, 71 (19) 2162-	-2175					

Source: J Am Coll Cardiol. 2018 May, 71 (19) 2162–2175

Anticoagulation Options

DOACs


Mechanism of Action	 chanism of Action Apixaban, edoxaban, rivaroxaban: binds to and inhibits factor Xa Dabigatran: binds to and inhibits thrombin 					
Advantages	Monitoring not Shorter half-life Quick onse					
Auvaillages	requi	ired	Shorter han-me		Quick onset	
Clinical and operational challenges						
Lack of data in chronic liver disease		Expensive		Harder t	o monitor if desired	

DOAC Landmark Studies

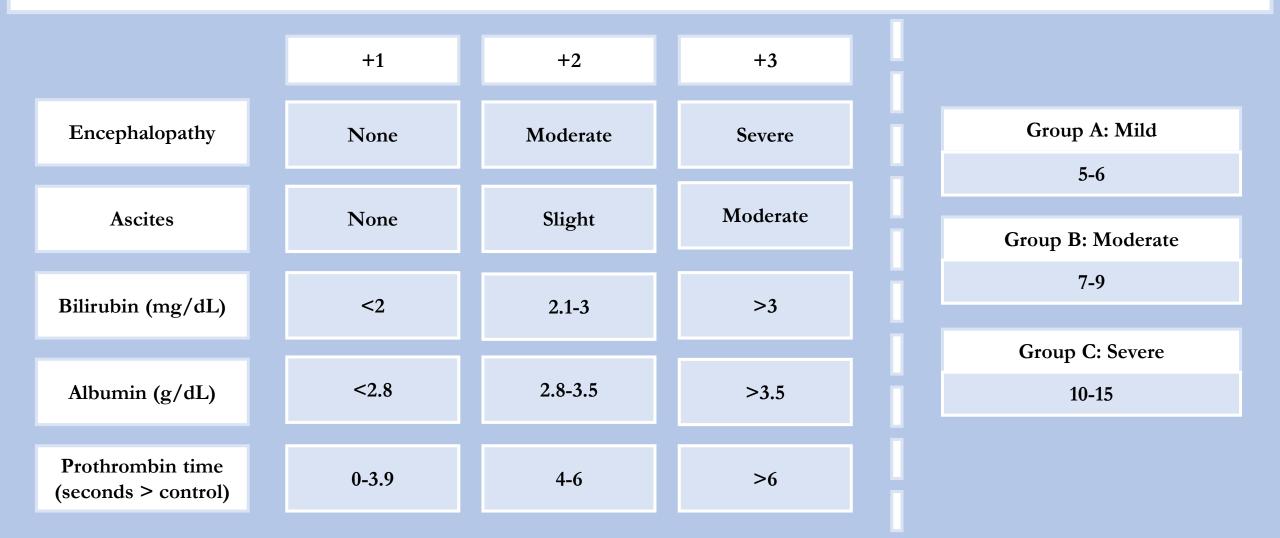
Trial	DOAC	Exclusion	
ROCKET AF	Rivaroxaban	 Acute or chronic hepatitis Cirrhosis ALT > 3x upper limit of normal (ULN) 	
ARISTOTLE	Apixaban	 AST or ALT 2x ULN Total bilirubin > 1.5x ULN 	
RE-LY	Dabigatran	Persistently high levels of ALT or ASTPresence of hepatitis A, B, or C	
ENGAGE AF-TIMI	Edoxaban	 ALT or AST >2x ULN Total bilirubin > 1.5x ULN 	

DOAC Pharmacokinetics and Hepatic Clearance

Liver Disease Effects on Pharmacokinetics

Source: J Am Coll Cardiol. 2018 May, 71 (19) 2162-2175

PPB: plasma protein binding


Direct Oral Anticoagulants

Drug	Apixaban	Apixaban Dabigatran Edoxab		Rivaroxaban	
Prodrug	No	Yes	No	No	
Renal	25%	80%	50%	35% 65%	
Hepatic	75%	20%	50%		
СҮР	Significant	nificant Minimal		Significant	
РРВ	87%	35%	55%	95%	

Source: J Am Coll Cardiol. 2018 May, 71 (19) 2162–2175

PPB: plasma protein binding

Child-Pugh Classification

Source: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-.

Assessment Question #3

Which DOAC has the highest percentage clearance by the liver?

- a. Apixaban
- b. Rivaroxaban
- c. Dabigatran
- d. Edoxaban

Assessment Question #3: Correct Response

Which DOAC has the highest percentage clearance by the liver?

- a. Apixaban
- b. Rivaroxaban
- c. Dabigatran
- d. Edoxaban

Assessment Question #4

Based on the presented pharmacokinetics, which DOAC would be expected to be least affected by chronic liver disease

- a. Apixaban
- b. Rivaroxaban
- c. Dabigatran
- d. Edoxaban

Assessment Question #4: Correct Response

Based on the presented pharmacokinetics, which DOAC would be expected to be least affected by chronic liver disease

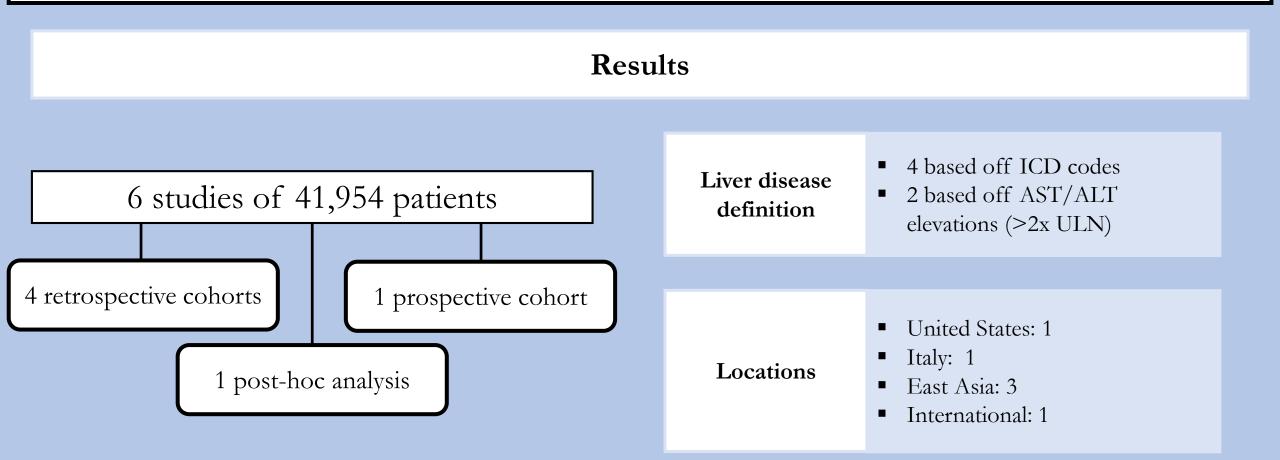
- a. Apixaban
- b. Rivaroxaban
- c. Dabigatran
- d. Edoxaban

Use of DOACs in Chronic Liver Disease

PPB: plasma protein binding

Meta-analysis

Direct Oral Anticoagulants versus Warfarin in Patients with Atrial Fibrillation and Liver Disease


Source: J Am Heart Assoc. 2019 Jul 16;8(14).

Ŋ	Aethods	
		Abided by PRISMA guidelines
	Patients	 Liver disease with concomitant nonvalvular atrial fibrillation Receiving warfarin or DOAC
	Outcomes	 Efficacy: ischemic stroke/systemic embolism Safety: all-cause mortality, major bleeding*, intracranial hemorrhage, major GI bleed *inconsistent definitions of GI bleeds between studies
	Study types	 Post-hoc analyses of randomized controlled trials, retrospective or prospective studies

Source: Am J Cardiovasc Drugs. 2020; 20:139–147.

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Meta-analysis: DOACs vs. Warfarin

Source: Am J Cardiovasc Drugs. 2020; 20:139–147.

Meta-analysis: DOACs vs. Warfarin

Primary Analysis						
Outcome	RR (95% CI)	\mathbf{I}^2	Risk Ratio			
Ischemic stroke/systemic embolism	0.80 (0.57 to 1.12)	71%				
All-cause mortality	0.78 (0.66 to 0.83)	73%	~			
Major bleeding	0.68 (0.53 to 0.88)	38%	\diamond			
Intracranial hemorrhage	0.49 (0.41 to 0.59)	0%	 			
GI bleed	0.90 (0.61 to 1.34)	61%				
*inconsistent between studies	Favors 1 Favors					

DOACs Warfarin

Meta-analysis: Conclusion

Author's Conclusion

Bases upon current observations, the use of DOACs is at least non-inferior to warfarin in patients with atrial fibrillation and chronic liver disease

Limitations					
Definition of chronic liver disease	Majority East Asian patients		Time in therapeutic range not charted in 5 studies		Mostly observational studies

Source: Am J Cardiovasc Drugs. 2020; 20:139–147.

Retrospective Cohort

Comparative Effectiveness and Safety of DOACs and Warfarin in Patients With Atrial Fibrillation and Chronic Liver Disease: A Nationwide Cohort Study

Methods

Study type	 Retrospective cohort of a large US-based administrative database
Inclusion	 Chronic liver disease with concomitant atrial fibrillation Patients ≥18 years of age Warfarin or DOAC
Exclusion	 Stroke, embolism, or major bleeding within 4 weeks of initial anticoagulant Patients with valvular atrial fibrillation Alternative indications for anticoagulation besides atrial fibrillation
Outcomes	 Efficacy: ischemic stroke/systemic embolism Safety: major bleeding, major GI bleed, all-cause mortality

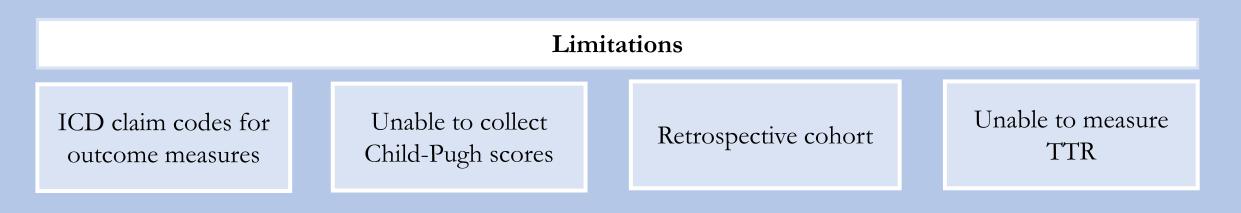
Results

10,209 patients included			
Warfarin	4,421		
Apixaban	2,721		
Rivaroxaban	2,211		
Dabigatran	851		
Edoxaban	5		

Baseline characteristic	DOACs (N=5,788)	Warfarin (N=4,421)
Mean age±SD, y	70.3±10.6	72.2±10
NAFLD/NASH, n (%)	1942 (33.6)	1188 (26.9)
Alcoholic liver disease, n (%)	640 (11.1)	595 (13.5)
Viral hepatitis, n (%)	689 (11.9)	428 (9.7)
Cirrhosis, n (%)	1399 (24.2)	1541 (34.9)
Chronic kidney disease, n (%)	1429 (24.7)	1389 (31.4)
Mean HAS-BLED, ±SD	4.0±1.3	4.2±1.2
Mean CHA_2DS_2 -VASc, $\pm SD$	3.9±1.8	4.3±1.8

Results

	Primary Analysis						
Outcome, n (%)	DOACs (N=5,788)	Warfarin (N=4,421)	IPTW HR (95% CI)	Hazard Ratio			
Stroke/embolism	74 (1.3)	115 (2.6)	0.64 (0.46–0.90)				
All-cause mortality	503 (8.7)	702 (1.6)	0.76 (0.67–0.87)	\diamond			
Major bleeding	263 (4.5)	383 (8.7)	0.69 (0.58–0.82)	\diamond			
GI bleed	179 (3.1)	248 (5.6)	0.73 (0.59–0.91)	\diamond			
				Favors 1 Favors			
Outcome, n (%)	Apixaban (N=2,721)	Rivaroxaban (N=2,211)	IPTW HR (95% CI)	DOACs Warfarin			
Major bleeding	98 (3.6)	119 (5.4)	1.59 (1.18–2.14)				
GI bleed	60 (2.2)	86 (3.9)	2.12 (1.52–2.98)				


Source: Circulation. 2023 Mar;10(7):782-794.

Conclusion

Author's Conclusion

Among patients with AF and chronic liver disease, DOACs as a class were associated with lower risks of hospitalization for ischemic stroke/systemic embolism and major bleeding versus warfarin

The incidence of clinical outcomes varied between individual DOACs

ICD: international classification of disease TTR: time in therapeutic range

Source: Circulation. 2023 Mar;10(7):782-794.

Chronic Liver Disease Summary

DOACs appear to be at least as effective and safe as warfarin Cause of CLD does not appear to affect clinical outcomes with DOACs

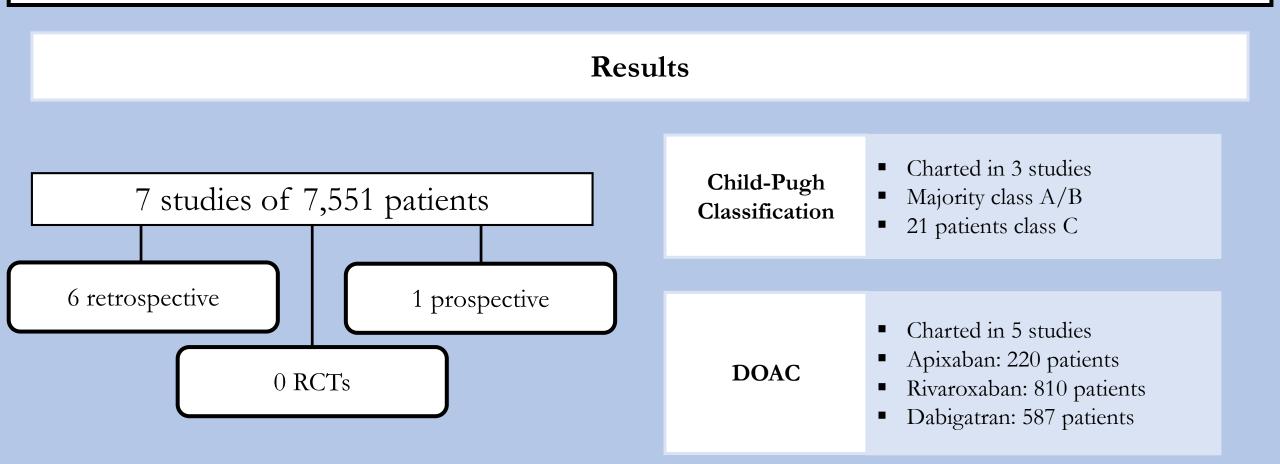
Data is limited to retrospective cohorts

DOACs appear to be a reasonable option for anticoagulation in patients with chronic liver disease

Does severity of liver disease affect outcomes with DOACs?

Use of DOACs in Cirrhosis

PPB: plasma protein binding


Meta-analysis

Direct Oral Anticoagulants versus Warfarin in Cirrhotic Patients with Atrial Fibrillation

Source: Am J Cardiovasc Drugs. 2023 Nov;23(6):683-694.

N	Iethods	
		Abided by PRISMA guidelines
	Patients	 Liver cirrhosis with concomitant atrial fibrillation Receiving warfarin or DOAC
	Outcomes	 Efficacy: ischemic stroke/systemic embolism Safety: all-cause mortality, major bleeding, intracranial hemorrhage, major GI bleed
	Study types	 Randomized controlled trials, retrospective or prospective studies

Meta-analysis: DOACs vs. Warfarin

Meta-analysis: DOACs vs. Warfarin

Primary Analysis					
Outcome	HR (95% CI)	P-value	\mathbf{I}^2		
Ischemic stroke/systemic embolism	0.79 (0.59 to 1.06)	0.12	0%		
All-cause mortality	0.94 (0.69 to 1.28)	0.07	63%		
Major bleeding*	0.61 (0.5 to 0.75)	< 0.00001	38%		
Intracranial hemorrhage	0.55 (0.31 to 0.98)	0.04	0%		
Major GI bleed	0.66 (0.51 to 0.85)	0.001	0%		
*inconsistent between studies					

Subgroup Analysis: Advanced Cirrhosis						
Outcome	HR (95% CI)	P-value	I ²			
Ischemic stroke/systemic embolism	1.38 (0.75 to 2.55)	0.31	0%			
Major bleeding*	0.59 (0.39 to 0.89)	0.01	0%			
Major GI bleed	0.65 (0.41 to 1.04)	0.08	0%			

Source: Am J Cardiovasc Drugs. 2023 Nov;23(6):683-694.

Meta-analysis: Conclusion

Author's Conclusion

DOACs are associated with more favorable safety outcomes when compared to warfarin in patients with liver cirrhosis and concomitant atrial fibrillation. Randomized, prospective studies are needed to validate these observations

Limitations

Majority of data came from 2 studies (5,368/7,551 patients)

DOAC use not consistently charted Majority of patients has uncharted Child-Pugh classification

Lawal et al and Lee et al

J Am Coll Cardiol. 2019 Jul, 73 (25) 3295–3308.

	Lawal et al	Lee et al				
Study type & population	Retrospective cohort of AF and CLD patients	Retrospective cohort of AF and CLD patients				
Methods	Identified diagnoses via administrative claims	Identified diagnoses via administrative claims				
Intervention	DOACs vs. Warfarin	DOACs vs. Warfarin				
Subgroup	Advanced liver cirrhosis defined as decompensated claim	Advanced liver cirrhosis defined as claim for ascites, HE, SBP, or varices				
Conclusion	DOACs > warfarin for embolism and major bleeds	DOACs = warfarin for embolism DOACs > warfarin for major bleeds				
	Both studies unable to collect Child-Pugh classification					
Sources: Circulation. 2023 Ma	ır 7;147(10):782-794.	AF: atrial fibrillation HE: hepatic encephalopathy				

CLD: chronic liver disease

SBP: spontaneous bacterial peritonitis

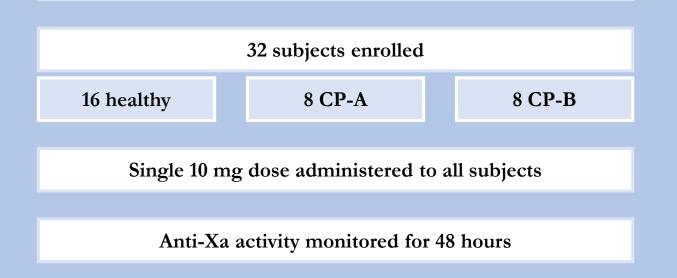
Does cirrhosis severity affect clinical outcomes with DOACs?

Retrospective Studies of Child-Pugh Scores

Author	Indication	Anticoagulant	DOAC CTP-Class, n (%)	Other AC CTP-Class, n (%)	Efficacy	Safety
Oldham, et al	AF, VTE	DOAC: 69 Warfarin/LMWH: 32	A: 10 (14.5) B: 59 (85.5) C: 0	A: 2 (6.3) B: 30 (93.7) C: 0	-	Bleeding: similar
Yoo, et al	AF	DOAC: 128 Warfarin: 110	A: 100 (78.1) B: 28 (21.9)	79 (71.8) 31 (28.2)	-	MB: similar
Coons, et al	AF, VTE	DOAC: 44 Warfarin: 41	A: 12 (27.3) B: 24 (54.5) C: 8 (18.2)	A: 5 (12.2) B: 27 (65.9) C: 9 (21.9)	Failed efficacy: similar	Major bleeding: similar
Serper, et al	AF	DOAC: 201 Warfarin: 614	A: 429 (69.9) B: 181 (29.5) C: 4 (0.65)	A: 184 (91.5) B: 17 (8.5) C: 0	-	Bleeding: favored DOACs
Jones, et al	AF, VTE	DOAC: 42 Warfarin: 37	A: 34 (81) B: 8 (19.1) C: 0	A: 16 (43.2) B: 19 (51.4) C: 2 (5.4)	Failed efficacy: similar	Bleeding: similar

Source: Am J Cardiovasc Drugs. 2023 Nov;23(6):683-694.

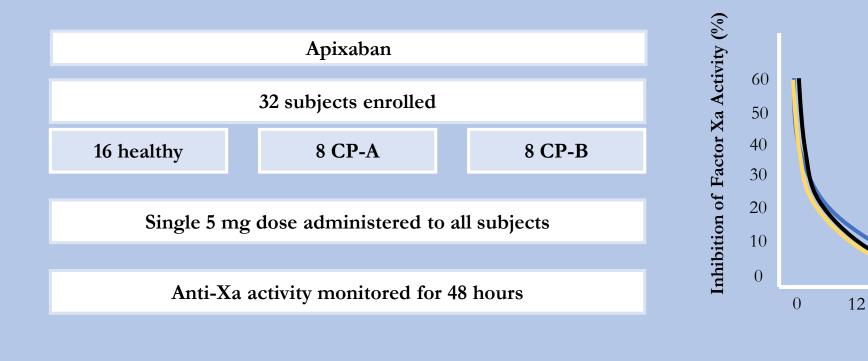
CTP: child-pugh; AC: anticoagulation; MB: major bleeding


Does the choice of DOAC affect outcomes in cirrhosis?


Current Guideline Recommendations

	Child-Pugh A	Child-Pugh B	Child-Pugh C	
Apixaban	Recommended	Caution	Contraindicated	
Dabigatran	Recommended	Caution	Contraindicated	
Edoxaban	Recommended	Caution	Contraindicated	
Rivaroxaban	Recommended	Contraindicated		

Rivaroxaban Pharmacokinetic Data


Effect of hepatic impairment on the pharmacokinetics and pharmacodynamics of a single dose of rivaroxaban, an oral, direct Factor Xa inhibitor

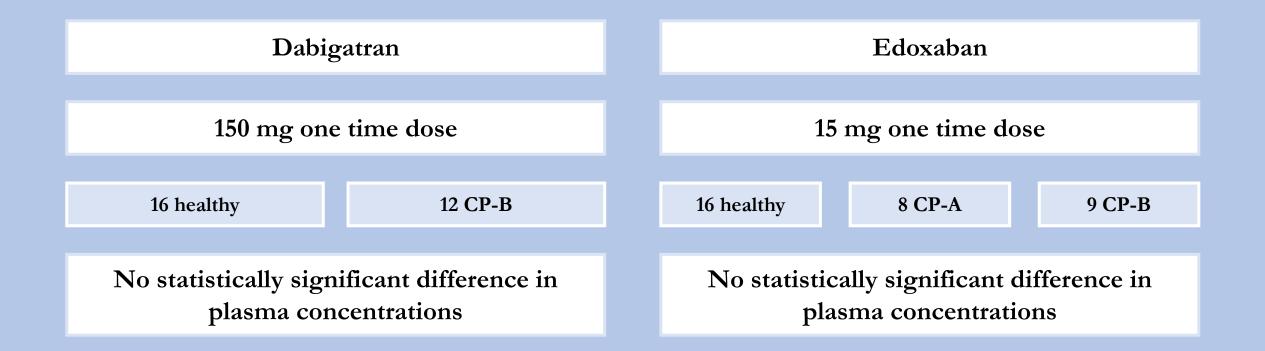
CP-A: Child-Pugh Classification A CP-B: Child-Pugh Classification B

Apixaban Pharmacokinetic Data

Healthy CP-A CP-B

Time (h)

24


36

48

CP-A: Child-Pugh Classification A CP-B: Child-Pugh Classification B

Source: Drugs R D. 2021 Dec;21(4):375-384.

Dabigatran and Edoxaban

Should patients with Child-Pugh C cirrhosis and atrial fibrillation be anticoagulated at all?

Child-Pugh C

Associated with >50% mortality risk at 1 year

Lee, et al	Rate of strokeAnnualized rate	cirrhosis and atrial fibrillation (warfarin vs. No warfarin): 1.8% vs. 4 te of major bleeding of Child-Pugh A f stroke reduction noticed in patients	vs. B/C: 4.9% vs. 14.5% (p<0.001)
Source a later a base water of a studios have contradicting equals that auge and hanglit of antices evaluation in			
Several other observational studies have contradicting results that suggest benefit of anticoagulation in patients with Child-Pugh C			
Individualized risk			
Venous thrombo	oembolism	Bleed risk (HAS-BLED)	CHA ₂ DS ₂ VASc

Source: Int J Cardiol. 2015 Feb 1;180:185-91.

Overall Conclusion

DOACs appear to be associated with more favorable safety outcomes when compared to warfarin in patients with chronic liver disease

Data is limited in more advanced liver disease, especially Child-Pugh C classified cirrhosis

If anticoagulation is pursued in patients with chronic liver disease or cirrhosis, DOACs should be limited to Child-Pugh classification A and B

Assessment Question #5

Which patient would most likely benefit from anticoagulation with a DOAC?

- a. A 55-year-old female with cirrhosis (Child-Pugh B) and a deep vein thrombosis offered rivaroxabn
- b. A 75-year-old male with cirrhosis (Child-Pugh B), Afib (CHA2DS2VASc: 5), and peptic ulcer disease offered apixaban
- c. A 45-year-old female with a pulmonary embolism, cirrhosis (Child-Pugh C), and a history of GI bleed (10 years ago) offered dabiagtran
- d. A 54-year-old male with cirrhosis (Child-Pugh C), INR of 1.9, and a deep vein thrombosis offered apixaban

Assessment Question #5: Correct Response

Which patient would most likely benefit from anticoagulation with a DOAC?

- a. A 55-year-old female with cirrhosis (Child-Pugh B) and a deep vein thrombosis offered rivaroxaban
- b. A 75-year-old male with cirrhosis (Child-Pugh B), Afib (CHA2DS2VASc: 5), and peptic ulcer disease offered apixaban
- c. A 45-year-old female with a pulmonary embolism, cirrhosis (Child-Pugh C), and a history of GI bleed (10 years ago) offered dabigatran
- d. A 54-year-old male with cirrhosis (Child-Pugh C), INR of 1.9, and a deep vein thrombosis offered apixaban

References

- Sharma A, Nagalli S. Chronic Liver Disease. [Updated 2023 Jul 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554597/
- Tacke F, Puengel T, Loomba R, Friedman SL. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J Hepatol. 2023 Aug;79(2):552-566. doi: 10.1016/j.jhep.2023.03.038.
 Epub 2023 Apr 14. PMID: 37061196
- Sease JM. Portal Hypertension and Cirrhosis. In: DiPiro JT, Yee GC, Haines ST, Nolin TD, Ellingrod VL, Posey L. eds. *DiPiro's Pharmacotherapy: A Pathophysiologic Approach, 12th Edition*. McGraw Hill; 2023. Accessed January 15, 2024. https://accesspharmacy.mhmedical.com/content.aspx?bookid=3097§ionid=267917762 Rautou PE, Caldwell SH, Villa E. Bleeding and Thrombotic Complications in Patients With Cirrhosis: A State-of-the-Art Appraisal. Clin Gastroenterol Hepatol. 2023 Jul;21(8):2110-2123.
- 4. Witt DM, Clark NP, Vazquez SR. Venous Thromboembolism. In: DiPiro JT, Yee GC, Haines ST, Nolin TD, Ellingrod VL, Posey L. eds. DiPiro's Pharmacotherapy: A Pathophysiologic Approach, 12th Edition. McGraw Hill; 2023. Accessed January 15, 2024. https://accesspharmacy.mhmedical.com/content.aspx?bookid=3097§ionid=268553772 Costache RS, Dragomirică AS, Gheorghe BE, Balaban VD, Stanciu SM, Jinga M, Costache DO. Oral Anticoagulation in Patients with Chronic Liver Disease. Medicina (Kaunas). 2023 Feb 12;59(2):346. doi: 10.3390/medicina59020346. PMID: 36837547; PMCID: PMC9967228.
- 5. Qamar A, Vaduganathan M, Greenberger NJ, Giugliano RP. Oral Anticoagulation in Patients With Liver Disease. J Am Coll Cardiol. 2018 May 15;71(19):2162-2175. doi: 10.1016/j.jacc.2018.03.023. PMID: 29747837.
- 6. Steensig K, Pareek M, Krarup AL, Sogaard P, Maeng M, Tayal B, Lee CJ, Torp-Pedersen C, Lip GY, Holland-Fischer P, Kragholm KH. Thromboembolism and bleeding in patients with atrial fibrillation and liver disease A nationwide register-based cohort study: Thromboembolism and bleeding in liver disease. Clin Res Hepatol Gastroenterol. 2022 Oct;46(8):101952.
- Tsoris A, Marlar CA. Use Of The Child Pugh Score In Liver Disease. [Updated 2023 Mar 13]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK542308/
- 8. Fu Y, Zhu W, Zhou Y, Chen H, Yan L, He W. Non-vitamin K antagonist oral anticoagulants versus warfarin in patients with atrial fibrillation and liver disease: a meta-analysis and systematic review. Am J Cardiovasc Drugs. 2020; 20:139–147.
- 9. Lawal OD, Aronow HD, Shobayo F, Hume AL, Taveira TH, Matson KL, Zhang Y, Wen X. Comparative Effectiveness and Safety of Direct Oral Anticoagulants and Warfarin in Patients With Atrial Fibrillation and Chronic Liver Disease: A Nationwide Cohort Study. Circulation. 2023 Mar 7;147(10):782-794.
- 10. Fu Y, Zhu W, Zhou Y, Chen H, Yan L, He W. Non-vitamin K antagonist oral anticoagulants versus warfarin in patients with atrial fibrillation and liver disease: a meta-analysis and systematic review. Am J Cardiovasc Drugs. 2020; 20:139–147.
- 11. Lawal OD, Aronow HD, Shobayo F, Hume AL, Taveira TH, Matson KL, Zhang Y, Wen X. Comparative Effectiveness and Safety of Direct Oral Anticoagulants and Warfarin in Patients With Atrial Fibrillation and Chronic Liver Disease: A Nationwide Cohort Study. Circulation. 2023 Mar 7;147(10):782-794
- 12. Hu T, Li YH, Han WQ, Maduray K, Chen TS, Hao L, Zhong JQ. Direct Oral Anticoagulants versus Vitamin K Antagonists in Cirrhotic Patients with Atrial Fibrillation: Update of Systematic Review and Meta-Analysis. Am J Cardiovasc Drugs. 2023 Nov;23(6):683-694.

References

- 1. Hu T, Li YH, Han WQ, Maduray K, Chen TS, Hao L, Zhong JQ. Direct Oral Anticoagulants versus Vitamin K Antagonists in Cirrhotic Patients with Atrial Fibrillation: Update of Systematic Review and Meta-Analysis. Am J Cardiovasc Drugs. 2023 Nov;23(6):683-694.
- 2. Oldham M, Palkimas S, Hedrick A. Safety and efficacy of direct oral anticoagulants in patients with moderate to severe cirrhosis. Ann Pharmacother 2022;56(07):782-790
- 3. Yoo SY, Kim E, Nam GB, et al. Safety of direct oral anticoagulants compared to warfarin in cirrhotic patients with atrial fibrillation. Korean J Intern Med (Korean Assoc Intern Med) 2022;37(03): 555–566
- 4. Coons EM, Staubes BA, Casey AL, et al. Direct oral anticoagulants versus warfarin for treatment of thrombosis or atrial fibrillation in patients with cirrhosis: a retrospective cohort study. Ann Pharmacother 2022;56(05):533–540
- 5. Serper M, Weinberg EM, Cohen JB, Reese PP, Taddei TH, Kaplan DE. Mortality and hepatic decompensation in patients with cirrhosis and atrial fibrillation treated with anticoagulation. Hepatology 2021;73(01):219–232
- 6. Jones K, Pham C, Aguilar C, Sheth S. Retrospective review on the safety and efficacy of direct oral anticoagulants compared with warfarin in patients with cirrhosis. Fed Pract 2020;37(10): 479-485
- 7. McCarthy PM, Patel N, Patton KK, Perez MV, Piccini JP, Russo AM, Sanders P, Streur MM, Thomas KL, Times S, Tisdale JE, Valente AM, Van Wagoner DR. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2024 Jan 2;149(1):e1e156. doi: 10.1161/CIR.000000000001193. Epub 2023 Nov 30. Erratum in: Circulation. 2024 Jan 2;149(1):e167.
- 8. Kubitza D, Roth A, Becka M, Alatrach A, Halabi A, Hinrichsen H, Mueck W. Effect of hepatic impairment on the pharmacokinetics and pharmacodynamics of a single dose of rivaroxaban, an oral, direct Factor Xa inhibitor. Br J Clin Pharmacol. 2013 Jul;76(1):89-98. doi: 10.1111/bcp.12054.
- 9. Frost CE, Ly V, Garonzik SM. Apixaban Pharmacokinetics and Pharmacodynamics in Subjects with Mild or Moderate Hepatic Impairment. Drugs R D. 2021 Dec;21(4):375-384. doi: 10.1007/s40268-021-00359-y. Epub 2021 Aug 7.
- 10. Mendell J, Johnson L, Chen S. An open-label, phase 1 study to evaluate the effects of hepatic impairment on edoxaban pharmacokinetics and pharmacodynamics. J Clin Pharmacol. 2015 Dec;55(12):1395-405.
- 11. Stangier J, Stähle H, Rathgen K, Roth W, Shakeri-Nejad K. Pharmacokinetics and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor, are not affected by moderate hepatic impairment. J Clin Pharmacol. 2008 Dec;48(12):1411-9.
- 12. Lee SJ, Uhm JS, Kim JY, Pak HN, Lee MH, Joung B. The safety and efficacy of vitamin K antagonist in patients with atrial fibrillation and liver cirrhosis. Int J Cardiol. 2015 Feb 1;180:185-91.

Contact:

Greg Taylor, PharmD, PGY2 Internal Medicine Resident

Thank you!

P: 205-783-3553

E: Gregory.taylor@BHSALA.com

1100 Dr. Martin L. King Jr. Boulevard, Suite 1100 Nashville, TN 37203

healthtrustpg.com