A HealthTrust Presentation May 3, 2023

Understanding Personal Continuous Glucose Monitoring in the Outpatient Setting

Maya Muhieddine, PharmD PGY-1 Pharmacy Resident Atlantic Health System Morristown, NJ

Preceptor: Amisha Mehta, PharmD, BCPS

Disclosures

The presenter and her preceptor have no relevant financial relationships with ineligible companies to disclose.

Note: This program may contain the mention of suppliers, brands, products, services, or drugs presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes and should not be perceived as an endorsement of any supplier, brand, product, service, or drug.

Objectives For Pharmacists

IDENTIFY

the most appropriate continuous glucose monitoring (CGM) device for a patient

RECALL

solutions to overcome barriers to obtaining a CGM for a patient

03

RECOGNIZE

an example of a CGM report to help optimize glycemic control for a patient

Objectives For Technicians

RECOGNIZE

the different components of different CGM devices

RECALL

common barriers to CGM access for patients

IDENTIFY

strategies to use CGM data to counsel patients

BACKGROUND

Continuous Glucose Monitors (CGM)

Sources: How do CGM systems work?: The Dexcom G6 CGM. Dexcom. FreeStyle Libre 2 system: CGM with real-time glucose alarms. Continuous Glucose Monitoring (CGM). Leelarathna L, et al.; FLASH-UK Trial Study Group. N Engl J Med. 2022 Oct 20;387(16):1477-1487

Continuous Glucose Monitors (CGM)

REAL-TIME

PATTERNS

INCREASED USE

continuous measurements of interstitial glucose

of glycemic variability

from 7% in 2016 to 30% in 2020

CGMs aggregate important data regarding a patient's glucose control and capture trends to allow patients to intervene when necessary and providers to optimize medication regimens

Personal Or Professional CGMs

Professional CGM

- Distributed by clinic to patients
- Limited supply
 - usually up to 2 weeks
- Option for blinded or unblinded data

Personal CGM

- Device owned by patient
 - $\circ~$ Supply can be refilled
 - $\circ~$ Data is always unblinded

Blinded Data

- CGM data only visible to provider and not the patient
- Results may reflect a more realistic day in terms of behaviors and glycemic control

Unblinded Data

- CGM data visible to both provider and patient
- Patient able to track glycemic patterns and modify behaviors accordingly

Components Of All CGM Devices

patch-like adhesive which contains a microneedle or filament that is inserted under the skin and measures interstitial glucose levels

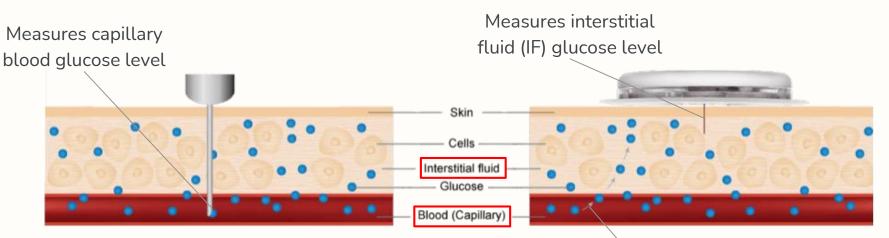
TRANSMITTER

sends glucose readings to reader via Bluetooth. May be integrated into the sensor or user may need to manually insert the transmitter into the sensor

READER or RECE

hand-held device that disp glucose levels, patterns, a arrows. May also be a con smartphone device

Source: Su-Lyn Gardner D. Continuous Glucose Monitoring for Blood Glucose Control. HealthXchange. Dexcom, Inc. Dexcom G6 Transmitter.


168

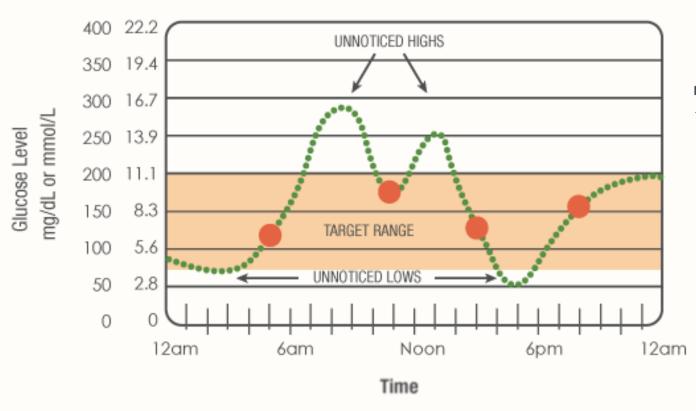
2hr

Self-Monitoring Blood Glucose (SMBG)

Glucometer

CGM

Multiple fingersticks can be inconvenient, painful, and lead to poor adherence


Glucose diffuses from capillaries into IF

Glucometer testing is the most accurate method of patient-measured BG levels and is recommended with the onset of hypoglycemic symptoms or suspected inaccurate CGM readings

Readings may lag behind BG readings by 15 minutes

Source: How FreeStyle Works. Continuous Glucose Monitoring (CGM).

Self-Monitoring Blood Glucose (SMBG)

•••••• CGM

Allows for continuous measurement and provides trend arrows to predict BG levels over time

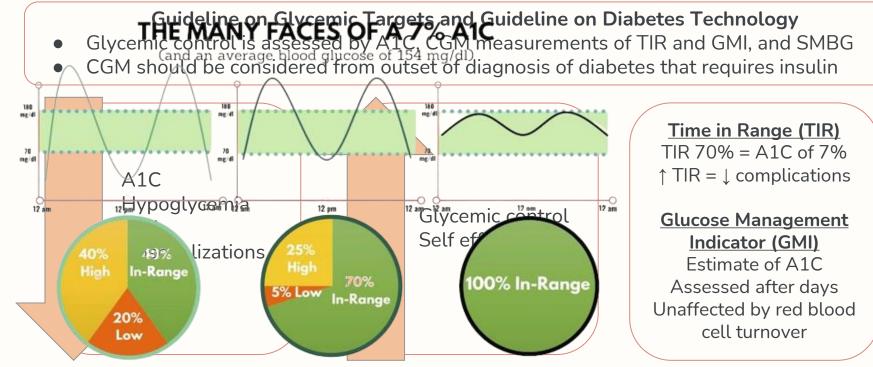
Only provides BG data for a specific point in time and does not capture patterns or predict changes in glucose levels

11

Mean Absolute Relative Difference (MARD)

- There is no international standard to define accuracy in the setting of CGM readings
- MARD is widely accepted to estimate CGM accuracy
- Requires SMBG values to be compared to CGM glucose levels at specified time points

Device has perfect accuracy and precision


MARD <10%

Marker of adequate analytical performance

O2 CLINICAL BENEFITS OF CGM

2023 American Diabetes Association (ADA) Recommendations

Sources: Scibilia R, Aldred C. What's Your Grade? diaTribe Learn. August 2021. ElSayed NA, Aleppo G, Aroda VR, et al. 7. Diabetes Technology: Standards of Care in Diabetes-2023. Diabetes Care. 2023. ElSayed NA, Aleppo G, Aroda VR, et al. 6. Glycemic Targets: Standards of Care in Diabetes-2023. Diabetes Care. 2023.

Benefit: A1C Lowering

	Intermittently Scanned Continuous Glucose Monitoring for Type 1 Diabetes	Effect of CGM on Glycemic Control in Type 2 Diabetes Treated with Basal Insulin	
Design	Parallel-group, multicenter, randomized controlled trial		
Population	n=156; type 1 diabetes; A1C between 7.5%-11%	n=175; type 2 diabetes treated with basal insulin; baseline mean A1C 9.1%	
Methods	1:1 randomization to CGM or glucometer	2:1 randomization to CGM or glucometer	
Results	Changes in A1C Over 24 Weeks Baseline Week 24 -0.2% 8.7 8.7 8.5 8.3 9 6 -0.2% 9 9 9 9 9 9 9 9 9 9 9 9 9	Changes in A1C Over 8 Months (34 Weeks)	

Benefit: Reduced Hypoglycemia

*MDI = multiple daily injections	Hypoglycemic Frequency and Effect of CGM in Type 1 Diabetes Treated With MDI Insulin	Effect of CGM on Glycemic Control in Type 2 Diabetes Treated with Basal Insulin	
Design	Parallel-group, multicenter, randomized controlled trial		
Population	n=158; type 1 diabetes treated with MDI insulin; A1C between 7.5%-9.9%	n=175; type 2 diabetes treated with basal insulin; baseline mean A1C 9.1%	
Methods	2:1 randomization to CGM or glucometer	2:1 randomization to CGM or glucometer	
Results	Hypoglycemic Event Rate per 24 Hours	Hypoglycemic Event Rate per Week Baseline Month 8 0.20 0.15 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	

Sources: Martens T, Beck RW, et al; MOBILE Study Group. JAMA. 2021 Jun 8;325(22):2262-2272.

Riddlesworth, T., et al. Hypoglycemic Event Frequency and the Effect of CGM in Adults with Type 1 Diabetes Using MDI Insulin. Diabetes Ther 8, 947–951 (2017).

- 16

O3 TYPES OF CGM DEVICES

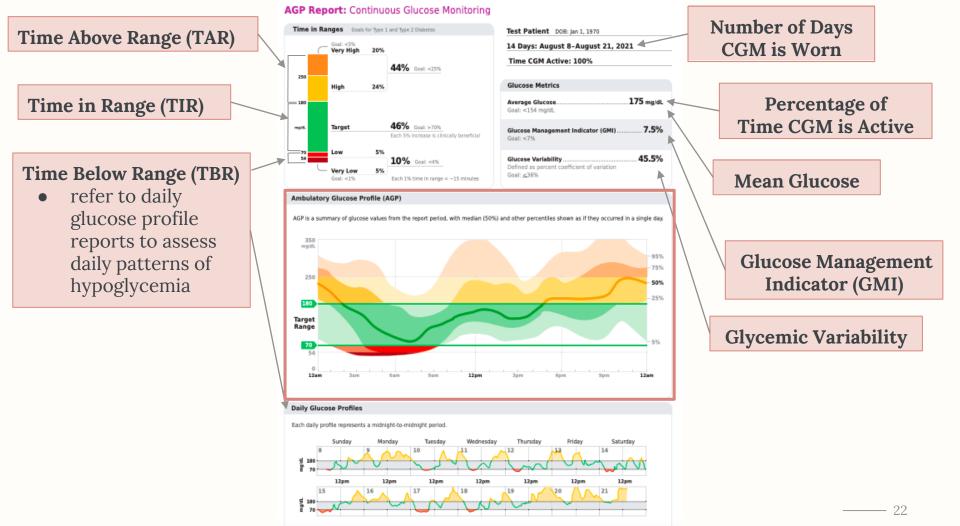
	Abbott		Dexcom	
Device	FreeStyle Libre 2	FreeStyle Libre 3	G6	G7
			110 110 100 100 100 100 100 100	
Components	Reader and sensor	Reader and sensor	Reader, sensor, transmitter	Reader and sensor
Туре	isCGM – scan every 8 hours	rtCGM	rtCGM	rtCGM
Calibration	None	None	Only if sensor code not used	Optional
Warm Up	1 hour	1 hour	2 hours	30 minutes
Lifespan	14 days	14 days	10 days	10 days
MARD	9.2%	7.8%	9.0%	8.2%

*Other devices include Eversense's Senseonics E3 and Medtronic's Guardian Sensor 3

Sources: Abbott. FreeStyle Libre 2 Flash Glucose Monitoring System User's Manual. Abbott. FreeStyle Libre 3 Flash Glucose Monitoring System User's Manual. Dexcom, Inc. Dexcom G6 User Guide. Dexcom, Inc. Dexcom G7 User Guide. - 18

	Abbott		Dexcom	
Device	FreeStyle Libre 2	FreeStyle Libre 3	G6	G7
Sensor	*	0	excom G6	• DEXCOM
Approval Age	>4 years	>4 years	>2 years	>2 years
Application Site	Back of upper arm	Back of upper arm	Abdomen Back of upper arm (>18 yo) Upper buttocks (2-17 yo)	Back of upper arm Upper buttocks (2-6 yo)
Insulin Pump Compatibility	Not available	Not available	Omnipod 5 Tandem t:slim X2	Not available yet
Interactions	<u>Vitamin C</u>		Acetaminophen • ↑glucose readings with high doses • Do not take ≥1g every 6 hours <u>Hydroxyurea</u> • ↑glucose readings • Use alternative CGM device	

*Other devices include Eversense's Senseonics E3 and Medtronic's Guardian Sensor 3


Sources: Abbott. FreeStyle Libre 2 Flash Glucose Monitoring System User's Manual. Abbott. FreeStyle Libre 3 Flash Glucose Monitoring System User's Manual. Dexcom, Inc. Dexcom G6 User Guide. Dexcom, Inc. Dexcom G7 User Guide. 19

O4 CGM DATA INTERPRETATION

Ambulatory Glucose Report Metrics

Glycemic Metric	Definition	ADA 2023 Target	
Percentage of time CGM is active	The percent of time the CGM is worn	≥70%	
Time Above Range (TAR)	Very High: >250 mg/dL	<5% <25%	
Time in Range (TIR)	Target 80-130 mg/dL ——	>70%	
Time Below Range (TBR)	Low: <70 mg/dL Very Low: <54 mg/dL	<4% <1%	
Mean Glucose	Average daily glucose values during time CGM is worn	<154 mg/dL	
Glucose Management Indicator	Estimate of A1C level	<7%	
Glucose Variability	Degree of fluctuation and frequency of variations in glucose readings	≤36% 21	

Source: ElSayed NA, Aleppo G, Aroda VR, et al. 6. Glycemic Targets: Standards of Care in Diabetes-2023. Diabetes Care. 2023.

Source: ElSayed NA, Aleppo G, Aroda VR, et al. 6. Glycemic Targets: Standards of Care in Diabetes-2023. Diabetes Care. 2023.

Ambulatory Glucose Profile (AGP)

AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if they occurred in a single day.

- TAR 350 Medication mg/dL adherence or 95% adjustments 75% Diet and 250 50% exercise Snacks 25% 180 Target Range 5% 70 54 TBR Medication 0 12am 3am 6am 9am 12pm Bom 9pm 12am timing or 6esm adjustments ADA recommends use of AGPs to make glycemic metrics more actionable Skipping meals
 - Excessive exercise

Source: ElSayed NA, Aleppo G, Aroda VR, et al. 6. Glycemic Targets: Standards of Care in Diabetes-2023. Diabetes Care. 2023.

Other Counseling Points

BARRIERS

Barriers

Financial Burden

- Assess formulary coverage
- Eligibility for manufacturer coupon or free trials

Wear Discomfort

- Rotate placement of sensor
- Consider smaller devices
- Suggest adhesive patches or bandages

Technological Literacy

- Provide initial and ongoing support and education
- Consider CGM with more userfriendly features

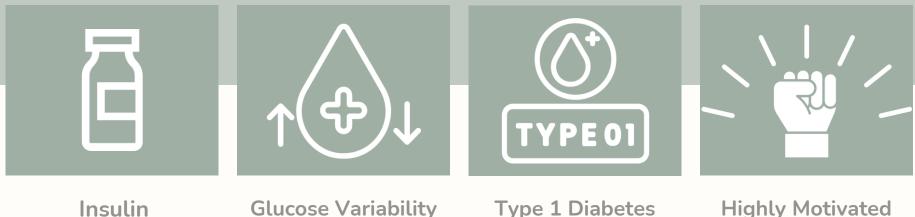
<u>/!\</u>

Inaccurate Readings

- $\circ~$ Discuss pros and cons of CGMs
- Counsel patient on when SMBG may be needed

FINANCIAL COVERAGE

Medicare and Medicaid Coverage


All the following eligibility criteria must be met:

- A Diagnosis of diabetes
- **B** Treatment with multiple (\geq 3) daily administrations of insulin or a continuous subcutaneous insulin infusion pump
- **C** Insulin regimen requires frequent adjustments on the basis of BG monitoring results
- **D** In-person doctor's visit for diabetes management 6 months prior to CGM initiation

E In-person follow-up visits every 6 months after CGM initiation to assess diabetes management

Source: Medicare Coverage Database. Local Coverage Determination (LCD): Glucose Monitors.

Patients Who Would Benefit from a CGM

• Multiple daily injections

Glucose Variability

- Hypoglycemia
- Hyperglycemia

- Frequent variability
- Insulin treated

Highly Motivated

• Eager to take an active role in their care

Source: Medicare Coverage Database. Local Coverage Determination (LCD): Glucose Monitors.

06 ASSESSMENT QUESTIONS

Question 1 – Pharmacists

A patient asks for your help in choosing a CGM device. He would prefer a device that (1) does not require scanning and (2) does not need to be replaced for 14 days. Which CGM device best matches the patient's preferences?

- a. FreeStyle Libre 2
- b. FreeStyle Libre 3
- c. Dexcom G6
- d. Dexcom G7

Question 1 – Answer

A patient asks for your help in choosing a CGM device. He would prefer a device that (1) does not require scanning and (2) does not need to be replaced for 14 days. Which CGM device best matches the patient's preferences?

- a. FreeStyle Libre 2
- **b.** FreeStyle Libre 3
- c. Dexcom G6
- d. Dexcom G7

Question 2 – Pharmacists

The following patients are interested in obtaining a CGM device but are concerned about a potential financial barrier. Identify the patient who is eligible for coverage of a personal CGM device through their CMS-based insurance?

- a. Patient A who takes metformin and empagliflozin
- b. Patient B who injects semaglutide once weekly
- c. Patient C who injects Lantus nightly and Humalog three times daily with meals
- d. Patient D who takes pioglitazone and glipizide and checks his blood glucose via a fingerstick four times daily

Question 2 – Answer

The following patients are interested in obtaining a CGM device but are concerned about a potential financial barrier. Identify the patient who is eligible for coverage of a personal CGM device through their CMS-based insurance?

- a. Patient A who takes metformin and empagliflozin
- b. Patient B who injects semaglutide once weekly
- c. Patient C who injects Lantus nightly and Humalog three times daily with meals
- d. Patient D who takes pioglitazone and glipizide and checks his blood glucose via a fingerstick four times daily

Question 3 – Technicians

Which of the following CGM components is highlighted in the red box above?

a. Receiverb. Transmitterb. Sensord. Lancing device

Question 3 – Answer

Sources: Dexcom, Inc. Dexcom G7 User Guide. Diabetic Outlet. Dexcom G6 Receiver. Dexcom, Inc. Dexcom G6 User Guide. Medline. Adjustable Lancing Device. Which of the following CGM components is highlighted in the red box above?

a. Receiverb. Transmitterb. Sensord. Lancing device

Question 4 – Technicians

Which of the following is not a common barrier to CGM use?

- **a.** Having difficulty utilizing the reader or app on a smartphone device to see glucose readings
- b. Needing to remove and replace the sensor after every shower
- C. Concern about sensor being visible to others
- d. CGM derived readings may be inaccurate during periods of hypoglycemia

Question 4 – Answer

Which of the following is not a common barrier to CGM use?

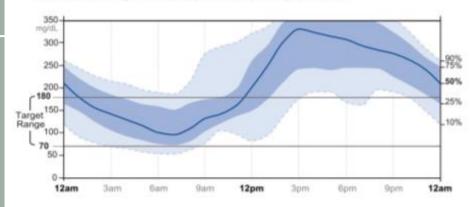
- **a.** Having difficulty utilizing the reader or app on a smartphone device to see glucose readings
- **b.** Needing to remove and replace the sensor after every shower
- C. Concern about sensor being visible to others
- d. CGM derived readings may be inaccurate during periods of hypoglycemia

Question 5 – Pharmacists

JY is a 42-year-old male who was diagnosed with type 2 diabetes 15 years ago and has been working towards an A1C goal of 7%.

Current Medications:

- Metformin 1000 mg po BID
- Empagliflozin 10 mg po daily
- Insulin glargine 30 units sc nightly
- Insulin lispro 6 units sc TID with meals


Based on JY's AGP report, during which time of day is he experiencing hyperglycemia?

- a. Between 3am to 6 am
- b. Between 6 am to 9 am
- c. Between 9 am to 12pm
- d. Between 3pm to 6 pm

Ambulatory Glucose Profile

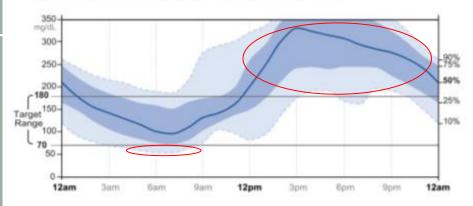
Curves/plots represent glucose frequency distributions by time regardless of date

Question 5 – Answer

JY is a 42-year-old male who was diagnosed with type 2 diabetes 15 years ago and has been working towards an A1C goal of 7%.

Current Medications:

- Metformin 1000 mg po BID
- Empagliflozin 10 mg po daily
- Insulin glargine 30 units sc nightly
- Insulin lispro 6 units sc TID with meals


Based on JY's AGP report, during which time of day is he experiencing hyperglycemia?

- a. Between 3am to 6 am
- b. Between 6 am to 9 am
- c. Between 9 am to 12pm
- d. Between 3pm to 6 pm

Ambulatory Glucose Profile

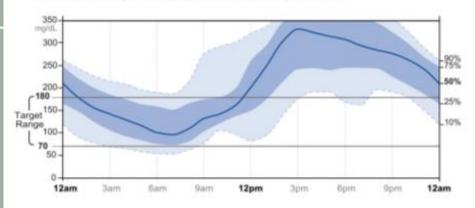
Curves/plots represent glucose frequency distributions by time regardless of date

40

Question 6 – Technicians

JY is a 42-year-old male who was diagnosed with type 2 diabetes 15 years ago and has been working towards an A1C goal of 7%.

JY states that his next A1C check is scheduled for 2 months from today. He is wondering if an A1C can be estimated from the data collected through his CGM.


Which of the following metrics from his AGP report would you tell JY could be used to estimate an A1C?

- a. Coefficient of variation
- b. Time above range
- c. Glucose management index
- d. Average glucose

Ambulatory Glucose Profile

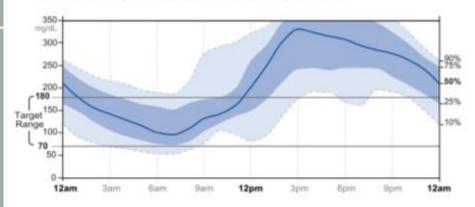
Curves/plots represent glucose frequency distributions by time regardless of date

41

Question 6 – Answer

JY is a 42-year-old male who was diagnosed with type 2 diabetes 15 years ago and has been working towards an A1C goal of 7%.

JY states that his next A1C check is scheduled for 2 months from today. He is wondering if an A1C can be estimated from the data collected through his CGM.


Which of the following metrics from his AGP report would you tell JY could be used to estimate an A1C?

- a. Coefficient of variation
- b. Time above range
- c. Glucose management index
- d. Average glucose

Ambulatory Glucose Profile

Curves/plots represent glucose frequency distributions by time regardless of date

References

- 1. How do CGM systems work?: The Dexcom G6 CGM. Dexcom.
- 2. FreeStyle Libre 2 system: CGM with real-time glucose alarms. Continuous Glucose Monitoring (CGM).
- Leelarathna L, Evans ML, Neupane S, Rayman G, Lumley S, Cranston I, Narendran P, Barnard-Kelly K, Sutton CJ, Elliott RA, Taxiarchi VP, Gkountouras G, Burns M, Mubita W, Kanumilli N, Camm M, Thabit H, Wilmot EG; FLASH-UK Trial Study Group. Intermittently Scanned Continuous Glucose Monitoring for Type 1 Diabetes. N Engl J Med. 2022 Oct 20;387(16):1477-1487. doi: 10.1056/NEJMoa2205650. Epub 2022 Oct 5. PMID: 36198143.
- 4. Su-Lyn Gardner D. Continuous Glucose Monitoring for Blood Glucose Control. HealthXchange.
- 5. Dexcom, Inc. Dexcom G6 Transmitter. https://ca.store.dexcom.com/en-CA/dexcom-g6/STS-GS-SENSORC.html. Accessed February 13, 2023.
- 6. How FreeStyle Works. Continuous Glucose Monitoring (CGM).
- 7. Introducing Dexcom G4 Platinum. Dexcom Continuous Glucose Monitoring. March 2016.
- 8. Heinemann L, Schoemaker M, Schmelzeisen-Redecker G, et al. Benefits and limitations of MARD as a performance parameter for continuous glucose monitoring in the interstitial space. J Diabetes Sci Technol. 2020;14(1):135-150. doi:10.1177/1932296819855670
- 9. Scibilia R, Aldred C. What's Your Grade? diaTribe Learn. August 2021.
- 10. ElSayed NA, Aleppo G, Aroda VR, et al. 7. Diabetes Technology: Standards of Care in Diabetes 2023. Diabetes Care. 2023;46(Suppl 1):S111-S127. doi:10.2337/dc23-S007
- 11. ElSayed NA, Aleppo G, Aroda VR, et al. 6. Glycemic Targets: Standards of Care in Diabetes 2023. Diabetes Care. 2023;46(Suppl 1):S97-S110. doi:10.2337/dc23-S006
- 12. Leelarathna L, Evans ML, Neupane S, Rayman G, Lumley S, Cranston I, Narendran P, Barnard-Kelly K, Sutton CJ, Elliott RA, Taxiarchi VP, Gkountouras G, Burns M, Mubita W, Kanumilli N, Camm M, Thabit H, Wilmot EG; FLASH-UK Trial Study Group. Intermittently Scanned Continuous Glucose Monitoring for Type 1 Diabetes. N Engl J Med. 2022 Oct 20;387(16):1477-1487. doi: 10.1056/NEJMoa2205650. Epub 2022 Oct 5. PMID: 36198143.
- 13. Martens T, Beck RW, Bailey R, Ruedy KJ, Calhoun P, Peters AL, Pop-Busui R, Philis-Tsimikas A, Bao S, Umpierrez G, Davis G, Kruger D, Bhargava A, Young L, McGill JB, Aleppo G, Nguyen QT, Orozco I, Biggs W, Lucas KJ, Polonsky WH, Buse JB, Price D, Bergenstal RM; MOBILE Study Group. Effect of Continuous Glucose Monitoring on Glycemic Control in Patients With Type 2 Diabetes Treated With Basal Insulin: A Randomized Clinical Trial. JAMA. 2021 Jun 8;325(22):2262-2272. doi: 10.1001/jama.2021.7444. PMID: 34077499; PMCID: PMC8173473.
- 14. Riddlesworth, T., Price, D., Cohen, N. et al. Hypoglycemic Event Frequency and the Effect of Continuous Glucose Monitoring in Adults with Type 1 Diabetes Using Multiple Daily Insulin Injections. Diabetes Ther 8, 947–951 (2017). https://doi.org/10.1007/s13300-017-0281-4
- 15. Abbott. FreeStyle Libre 2 Flash Glucose Monitoring System User's Manual. https://www.binsons.com/uploads/userfiles/files/documents/products/Libre%202%20User%20Manual.pdf. Accessed February 13, 2023.
- 16. Abbott. FreeStyle Libre 3 Flash Glucose Monitoring System User's Manual. https://freestyleserver.com/Payloads/IFU/2022/q2/ART46090-003_rev-A.pdf. February 13, 2023.
- 17. Dexcom, Inc. Dexcom G6 User Guide. https://s3.us-west-2.amazonaws.com/dexcompdf/Downloads+and+Guides+Updates/LBL016368+G6+Using+Your+G6+Guide+Canada.pdf. Accessed February 13, 2023.
- 18. Dexcom, Inc. Dexcom G7 User Guide. https://www.dexcom.com/en-us/guides. Accessed February 13, 2023.
- Medicare Coverage Database. Local Coverage Determination (LCD): Glucose Monitors. https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?lcdid=33822. Accessed February 14, 2023.
 Diabatic Outlet. Devcem G6 People of the content of
- 20. Diabetic Outlet. Dexcom G6 Receiver. https://diabeticoutlet.com/product/dexcom-g6-receiver/. Accessed February 13, 2023.
- 21. Medline. Adjustable Lancing Device. https://athome.medline.com/en/adjustable-lancing-device-mphlancingpen. Accessed February 13, 2023.

Thank you!

Maya Muhieddine, PharmD PGY-1 Pharmacy Resident | Atlantic Health System **maya.muhieddine@atlantichealth.org**