THE CURRENT ROLE OF HEMOSTATIC AGENTS IN THE MANAGEMENT OF SPONTANEOUS INTRACEREBRAL HEMORRHAGE

A presentation for HealthTrust Members March 15, 2023

Gregory Taylor, PharmD, PGY1 Resident Princeton Baptist Medical Center Preceptor: John Michael Herndon, PharmD

Clinical Pharmacy Specialist

DISCLOSURES

- The presenter and their preceptor have no financial relationships with any commercial interests pertinent to this presentation.
- This program may contain the mention of drugs, brands or suppliers presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes and should not be perceived as an endorsement of any particular drug, brand or supplier.

OBJECTIVES

Identify common clinical presentations, risk factors, and pathophysiology of spontaneous intracerebral hemorrhages

Recall current guideline recommendations on acute management of spontaneous intracerebral hemorrhages

Recognize the optimal time to administer hemostatic agents in specific subgroups of patients presenting with spontaneous intracerebral hemorrhage

SPONTANEOUS INTRACEREBRAL HEMORRHAGE (SICH)

Red arrow: Microhemorrhage Green arrow: deep hematoma

Sources: Lancet 2018; 392: 1257–68. Stroke. 2022;53:e282–e361. N Engl J Med. 2022 Oct; 387:1589-1596. N Engl J Med. 2005 Feb 24;352(8):777-85.

Defined as a brain injury attributable to a non-traumatic formation of a hematoma in the brain parenchyma

Accounts for 10-15% of all strokes worldwide and is the most common type of intracranial hemorrhage^{1,2,3}

Affects ~2 million people per year¹

1 out of 3 patients die within the first month of onset and only 20% regain functional independence^{1,2,3}

RISK FACTORS

NOAC: Novel Oral Anti-Coagulant

Source: Schizodimos T, et al. J Anesth. 2020 Oct;34(5):741-757. Stroke. 2022;53:e282–e361. Lancet 2018; 392: 1257–68 N Engl J Med. 2022 Oct; 387:1589-1596.

VASCULAR CAUSES

6

COMPLICATIONS OF SICH

7

Source: Stroke. 2022;53:e282–e361.

MEDICAL MANAGEMENT

There is currently no medical therapy that has demonstrated a clear benefit in patients presenting with a SICH Hematoma Expansion is a poor prognostic marker associated with increased mortality and disability in patients presenting with ICH

Therefore, most of our medical therapies target hematoma expansion to potentially to improve clinical outcomes

Source: Stroke. 2022;53:e282–e361.

BLOOD PRESSURE MANAGEMENT[°]

ATACH-2

- Patients with ICH to 1 of 2 BP goals:
 - 1. SBP: 110-139 mmHg
 - 2. SBP: 140 to 180 mmHg
- No difference in clinical outcomes
- Increased renal adverse events with more intensive group

BLOOD PRESSURE GOALS (AHA)

- 1. BP range of 130-150 mmHg within 2 hr of onset and within 1 hr of treatment (2b)
- 2. Titration to ensure smooth, sustained control of BP (2a)
- 3. Avoid SBP < 130 mmHg (3) Based largely off two trials

INTERACT-2

- Patients with ICH to 1 of 2 BP goals:
 - 1. SBP <140 mmHg

- 2. SBP <180 mmHg
- Improved functional outcomes
- No difference in renal adverse events

Post-Hoc analysis of INTERACT-2 showed increased standard deviation of SBP within 24 hr associated with increased disability and death

Sources: Lancet 2018; 392: 1257–68 Stroke. 2022;53:e282–e361. N Engl J Med. 2022 Oct; 387:1589-1596.

N Engl J Med. 2022 Oct; 387:1589-1596.

ASSESSMENT QUESTION 1

Which of the following is not a risk factor for a spontaneous intracerebral hemorrhage?

- a. Hypertension
- b. Anticoagulation
- c. Caucasian race
- d.Older age

ASSESSMENT QUESTION 1 CORRECT RESPONSE

Which of the following is not a risk factor for a spontaneous intracerebral hemorrhage?

- a. Hypertension
- b. Anticoagulation
- c. Caucasian race
- d. Older age

ASSESSMENT QUESTION 2

A 67 year old male with a past medical history of hypertension, dyslipidemia, and type 2 diabetes mellitus presents with left sided weakness, slurred speech, and left facial droop. Last known well was 3 hours prior to admit. CT of head reveals an intracranial hemorrhage. Patient's blood pressure is 168/72 mmHg. Which of the following strategies is the BEST for acute blood pressure reduction?

- a. Clevidipine titrated to achieved BP between 130 to 150 mmHg within 1 hour of initiation
- b. Cardene titrated to achieve BP target of <140 mmHg within 2 hours of treatment initiation
- c. IV hydralazine titrated to achieve BP between 130 to 150 mmHg within 1 hour of initiation
- d. Clevidipine titrated to achieve BP target of <140 mmHg within 2 hours of treatment initiation

ASSESSMENT QUESTION 2 CORRECT RESPONSE

A 67 year old male with a past medical history of hypertension, dyslipidemia, and type 2 diabetes mellitus presents with left sided weakness, slurred speech, and left facial droop. Last known well was 3 hours prior to admit. CT of head reveals an intracranial hemorrhage. Patient's blood pressure is 168/72 mmHg. Which of the following strategies is the BEST for acute blood pressure reduction?

a. Clevidipine titrated to achieved BP between 130 to 150 mmHg within 1 hour of initiation
b. Cardene titrated to achieve BP target of <140 mmHg within 2 hours of treatment initiation
c. IV hydralazine titrated to achieve BP between 130 to 150 mmHg within 1 hour of initiation
d. Clevidipine titrated to achieve BP target of <140 mmHg within 2 hours of treatment initiation

GENERAL HEMOSTASIS

Source: Stroke. 2022;53:e282–e361.

RECOMBINANT FACTOR VIIA (RFVIIA)

Mechanism of Action

rFVIIa binds to tissue factor (TF) at sites of tissue injury/vascular wall disruption \rightarrow Activation of factor X \rightarrow Fibrin deposition \rightarrow Coagulation \rightarrow Hemostasis

Rationale for Use in SICH

Hemophiliacs and Perioperative Use

Induce coagulation in patients with hemophilia who have reduced VIII or IX activity

Reduces perioperative bleeding in patients undergoing surgery

Factor VIIa Phase 2b Trial

Study	Double-blind, randomized, placebo-controlled trial across 20
Design	countries in 73 hospitals
Objective	"to determine whether rFVIIa can effectively reduce hematoma growth in patients with acute intracerebral hemorrhage, and thus improve their outcomes"

Inclusion

- ≥ 18 years of age
- CT scan of primary, spontaneous intracerebral hemorrhage
- Symptom onset within 3 hours
- Glasgow Coma Scale (GCS) >5

Exclusion

- Planned surgical intervention within 24 hr
- modified Rankin Scale (mRS) >2 prior to ICH
- Oral anticoagulant use
- Any coagulopathy
- Any symptomatic thrombotic or vaso-occlusive disease within 30 days

Intervention

Baseline Characteristics

Variable	Placebo (N=96)	40 mcg/kg (N=108)	80 mcg/kg (N=92)	160 mcg/kg (N=103)
Age (yr)	68	67	65	64
Male (%)	53	63	61	67
White (%)	81	77	86	80
NIHSS	15	14	12	14
GCS	14	14	15	14
Mean time from onset to treatment (min)	165	173	167	165
Treated <3 hr after onset (%)	72	62	76	71

Source: N Engl J Med. 2005 Feb 24;352(8):777-85

Efficacy & Safety Outcomes

Unfavorable Outcomes Based on Various Scales								
	MRS		E-GCS		NIHSS		Barthel Index	
Dose	OR (95% CI)	P-Value	OR (95% CI)	P-Value	OR (95% CI)	P-Value	OR (95% CI)	P-Value
Combined	1.8 (1.1 - 3.0)	0.004	1.4 (0.7 - 3.0)	0.14	-	0.008	-	0.006

percent of group

Thromboembolic (TE) Events		
Dose	No. (%)	
Placebo	2 (2)	
40 mcg/kg	7 (6)	
80 mcg/kg	4 (4)	
160 mcg/kg	10 (10)	
Combined	21 (7)	

No difference in mortality or functional outcomes due to TE

21

Source: N Engl J Med. 2005 Feb 24;352(8):777-85

Conclusion

Strengths

- Analyzed multiple doses
- Analyzed timing of treatment
- Combined unfavorable outcomes
- Placebo group had similar rates of HE when compared to other studies

Weaknesses

- Placebo group was noted to have lower mortality than expected when compared to other population studies
- Underpowered subgroup of patients treated within time of 3-4 hours

Conclusion

- Ultra-early hemostatic therapy (within 4 hr of onset) with rFVIIa limits the growth of hemorrhage, reduces mortality, and improves functional outcomes after intracerebral hemorrhage
 - rFVIIa should be administered with caution to patients with ICH who have risk factors for thromboembolic disease

FAST Trial

Study	Multi-center, double-blind, randomized, placebo-controlled
Design	trial across 22 countries at 122 hospitals
Objective	To evaluate the effects of 20 mcg/kg and 80 mcg/kg of rFVIIa on rates of death and severe disability after intracerebral hemorrhage

Inclusion

- ≥ 18 years of age
- CT scan of spontaneous intracerebral hemorrhage
- Symptom onset within 3 hours
- GCS >5

Exclusion

- Planned surgical intervention within 24 hr
- mRS >2 prior to ICH
- Oral anticoagulant use
- Any coagulopathy potential
- Any symptomatic thrombotic or vaso-occlusive disease within 30 days

Intervention

Baseline Characteristics

Variable	Placebo (N=268)	20 mcg/kg (N=276)	80 mcg/kg (N=297)
Age (yr)	65	65	65
Male (%)	63	61	61
White (%)	67	72	69
NIHSS	13	13	13
GCS	15	14	14
Intraventricular hemorrhage (%)	29	35	41
Baseline volume (mL)	22	24	23
Time from onset to treatment (min)	160	161	160
Treated <3 hr after onset (%)	72	72	74
Treated <2 hr after onset (%)	17	17	17

Source: N Engl J Med. 2008 May 15;358(20):2127-37

Efficacy & Safety Outcomes

	Unfav	orable Ou	tcomes Based on `	Various Sca	ales	
	MRS		NIHSS		Barthel I	ndex
Dose	OR (95% CI)	P-Value	Median	P-Value	Median	P-Value
20 mcg/kg	$1.0 \; (0.6 - 1.6)$	-	5	0.2	72.5	0.54
80 mcg/kg	1.4 (0.9 to 2.2)	-	4	0.02	70.0	0.91

Dose	No. (%)
Placebo	21 (8)
20 mcg/kg	24 (9)
80 mcg/kg	31 (10)

TE Events

Higher rates in 80 mcg/kg group on arterial TE events (P = 0.04)

Source: N Engl J Med. 2008 May 15;358(20):2127-37

Conclusion

Strengths	Weaknesses		
 Looked at multiple doses to analyze dose dependent effects Analyzed timing of treatment for effect on HE volume increase Combined unfavorable outcomes into outcome 	 Randomization imbalances (Intraventricular hemorrhage) Placebo group was noted to have significantly worse poor functional outcome and mortality than expected when compared to prior phase 2b trial 		

Author's Conclusion

- rFVIIa reduced hematoma growth
- Reduced hematoma growth did not translate into a reduced rate of death or severe disability after intracerebral hemorrhage.

POST-HOC ANALYSIS

Rationale

Results from FAST differed significantly from Phase 2b trial

Earlier treatment and 80 mcg/kg rFVIIa associated with improved outcomes

Patients with known risk for poor outcome at baseline may confound results of hemostatic agents on positive outcomes

Design

Performed univariate assessments on various factors and their effect on the odds of poor outcome to identify which patients to include for their subgroup analysis

29

SUBGROUP AND RESULTS

Predictors of Better Outcomes

Variable	Placebo (N=59)	80 mcg/kg (N=55)
Age (yr)	56	56
NIHSS	14	13
GCS	14	14
Intraventricular hemorrhage (%)	20	20
Time from onset to treatment (min)	122	123

Outcomes				
Outcome	Placebo (N=59)	80 mcg/kg (N=55)	OR (95% CI)	P-Value
90-day mortality No. (%)	6 (10)	3 (5)	0.4 (0.1 to 1.8)	0.21
mRS (Unfavorable outcomes) No. (%)	11 (19)	5 (9)	0.28 (0.08 to 1.06)	0.03
HE (Mean % Increase)	39.2	13.9	-	0.01
Serious TE No. (%)	6 (10)	9 (16)	-	-

Author's Conclusion

- Early administration of rFVIIa does not result in consistent clinical benefit without considering other factors
- Further studies are warranted to explore the potential benefits of rFVIIa in specific patients presenting with spontaneous ICH

SPOTLIGHT AND STOP-IT Trials

Study Design	Pooled analysis of 2 phase-II trials (SPOTLIGHT and STOP-IT) Both were multi-center, double-blinded, placebo-controlled, randomized trials
Objective	To investigate whether recombinant activated coagulation factor VII (rFVIIa) reduces hemorrhage expansion among patients with spot sign–positive ICH

Inclusion

Exclusion

- ≥ 18 years of age
- CT scan of primary, spontaneous intracerebral hemorrhage with positive spot sign
- Treatment within 6 to 6.5 hours of onset of symptoms

- Planned surgical intervention
- Oral anticoagulant use
- Cardiac or cerebral ischemia, elevated risk of myocardial infection, or thromboembolism

CT Spot Sign

White Arrow: CT Spot Sign

Prognostic and Treatment Implications

Represents extravasation of contrast material within the hematoma

Indicator of active hemorrhage

Associated with high likelihood of continued HE

Associated with worse clinical outcomes and increased mortality

Intervention

Source: JAMA Neurol. 2019 Dec 1;76(12):1493-1501.

Baseline Characteristics

Variable	Placebo (N=37)	80 mcg/kg (N=32)
Age (yr)	66.7	70.7
Male (%)	54	47
White (%)	54	66
NIHSS	16	16
GCS	13	14
Mean ICH volume (mL)	20.4	16.3
Intraventricular hemorrhage (%)	38	44
Time from onset to treatment (min)	161	195
Treated <3 hr after onset (%)	65	37

Myocardial infarction, ischemic stroke, or pulmonary embolism			
Dose	No. (%)	P-Value	
Placebo	4 (11)	-	
80 mcg/kg	2 (6)	0.68	

Source: JAMA Neurol. 2019 Dec 1;76(12):1493-1501.

Conclusion

Strengths

Pooled results from two trials with similar inclusion and exclusion criteria

Required use of spot sign on CT to determine if CT spot sign should be used in a treatment algorithm for patients presenting with ICH

Weaknesses

Allowed treatment up to 6 hr after onset of symptoms

Onset of ICH to treatment was significantly lower for placebo

Very small population (likely underpowered trial)

Conclusion

rFVIIa did not significantly reduce hemorrhage expansion in patients with spot sign-positive ICH when treated within 6.5 hours of onset

Source: JAMA Neurol. 2019 Dec 1;76(12):1493-1501.

Cochrane Meta-Analysis

Study Design

Meta-analysis of 12 RCTs involving 1732 patients

Factor VIIa: FAST, Phase 2b, Phase 2a, and 2 other trials

Objective

To examine the effectiveness and safety of individual classes of hemostatic therapies, compared against placebo or open control, in adults with acute spontaneous intracerebral hemorrhage

Outcome	No. (%) Intervention	No. (%) Control	RR (95% CI)	Forrest Plot
Death/Dependence	465 (48)	409 (51)	0.86 (0.66 to 1.11)	
Death at 90 Days	181 (18)	94 (21)	0.71 (0.44 to 1.14)	
TE Events	81 (8)	28 (7)	1.24 (0.8 to 1.91)	
			FAVORS INTERV	/ENTION FAVORS PLACEBO

Source: Cochrane Database Syst Rev. 2018 Apr 17;4(4).

OVERALL CONCLUSION

Role of rFVIIa in sICH

Future Directions

Current evidence does not suggest that rFVIIa has a role in sICH

Future trials are warranted to identify subgroups of patients that could potentially benefit from rFVIIa

FASTEST trial underway

Evaluating patients with sICH who have smaller baseline volumes of ICH and IVH

Within 120 minutes of stroke onset with a goal to treat ¹/₂ patients within 90 minutes

Utility		
rFVIIa associated with high cost	Limited utility due to very specific population	

ASSESSMENT QUESTION 3

According to the post-hoc analysis of the FAST trial, which patient would most likely benefit from the administration of factor VIIa after presenting with a spontaneous intracerebral hemorrhage?

- a. 82-year-old male with symptom onset of 1 hour, ICH volume of ~55 mL, no IVH
- b. 65-year-old male with symptom onset of 1 hour, ICH volume of ~45 mL, no IVH
- c. 55-year-old female with symptom onset 3.5 hours, ICH volume of 45 mL, no IVH
- d. 64-year-old male with symptom onset of 1 hour, ICH volume of ~55 mL, and IVH volume of ~10 mL

ASSESSMENT QUESTION 3 CORRECT RESPONSE

According to the post-hoc analysis of the FAST trial, which patient would most likely benefit from the administration of factor VIIa after presenting with a spontaneous intracerebral hemorrhage?

- a. 82-year-old male with symptom onset of 1 hour, ICH volume of ~55 mL, no IVH
- b. 65-year-old male with symptom onset of 1 hour, ICH volume of ~45 mL, no IVH
- c. 55-year-old female with symptom onset 3.5 hours, ICH volume of 45 mL, no IVH
- d. 64-year-old male with symptom onset of 1 hour, ICH volume of ~55 mL, and IVH volume of ~10 mL

ASSESSMENT QUESTION 4

True or false, patients presenting with spontaneous intracerebral hemorrhage with CT spot sign show improved outcomes after hemostatic agents are administered

- a. True
- b. False

ASSESSMENT QUESTION 4 CORRECT RESPONSE

True or false, patients presenting with spontaneous intracerebral hemorrhage with CT spot sign show improved outcomes after hemostatic agents are administered

a. True **b. False**

TRANEXAMIC ACID (TXA)

Mechanism of Action

Competitive inhibitor to receptor found on plasminogen → Prevents conversion of plasminogen to plasmin → Decreased fibrin breakdown

Sources: Health Technol Assess. 2013 Mar;17(10):1-79. Lancet. 2019 Nov 9;394(10210):1713-1723

Rationale for Use in SICH

CRASH-2 and CRASH-3 Trial TXA has shown benefit in bleeding trauma patients on mortality

CRASH-2 administered within 8 hr of injury CRASH-3 within 3 hr of injury

TICH-2 Trial

Study Design

Multi-center, double-blind, randomized, placebo-controlled trial across 12 countries at 124 sites

Objective

To test the hypothesis that intravenous tranexamic acid reduces death and dependence when given within 8 h of spontaneous intracerebral hemorrhage

Inclusion

- ≥ 18 years of age
- CT scan of spontaneous intracerebral hemorrhage
- Symptoms onset within 8 hours
- GCS ≥5

Exclusion

- mRS >4 prior to ICH
- Life expectancy <3 months
- Oral anticoagulant use
- Any coagulopathy potential
- Any symptomatic thrombotic or vaso-occlusive disease within 30 days

46 Intervention **2325 patients randomized to receive intravenous** dose of TXA or placebo **1 g loading dose** Stratified randomization: age, sex, time of Followed by 1 g over Placebo onset, systolic blood pressure, NIHSS, IVH 8 hours (N=1164) presence, antiplatelet use (N=1161) All patients received medical management in accordance with the AHA Guidelines

Baseline Characteristics

Variable	Placebo (N=1164)	TXA (N=1161)
Age (yr)	68.7	69.1
Male (%)	57	55
White (%)	85	85
Prior antiplatelet use (%)	25	27
Systolic blood pressure (mmHg)	174	172
ICH volume (mL)	12.5	14.1
IVH Presence (%)	31	33
Pre-stroke mRS	0	0
NIHSS	13	13
GCS	14	13
Time from onset to randomization		
≤3 hr (%)	35	36
≤4.5 hr (%)	68	67

Efficacy and Safety Outcomes

Shift in mRS Score at Day 90			
	Ordinal OR (95% CI)	P-Value	
TXA vs. Placebo	0.88 (0.76 to 1.03)	0.11	

Survival at 90 Days			
	No. (%)	HR (95% CI)	P-Value
Placebo	249 (21)	-	-
TXA	250 (22)	0.92 (0.77 to 1.1)	0.37

Hematoma Expansion			
	No. (%)	OR (95% CI)	P-Value
Placebo	304 (29)	-	-
ТХА	265 (25)	0.8 (0.66 to 0.98)	0.03

Subgroup Analysis of mRS Shift			
	Mean Difference (95% CI)	P-Value	
BP ≤ 170 mmHg	0.73 (0.59 to 0.90)	0.0188	
Baseline Volume of 30-60 mL	0.66 (0.44 to 0.98)	-	

Authors reported that patients who received TXA had lower rates of serious adverse events. There was not a significantly higher rate of arterial occlusion or venous thromboembolism (3% in both groups)

CONCLUSION

Strengths	Well balanced baseline characteristics Broad inclusion criteria
Weaknesses	Allowed enrollment up to 8 hours after onset Smaller population when compared to other TXA trials (Possibly underpowered to detect clinical outcomes)

Author's Conclusion

- TXA did not affect functional status or mortality at day 90
- Future research should investigate which subgroups of patients might benefit

META-ANALYSIS

Study Design

Meta-analysis of 4 RCTs involving 2666 patients with high risk hemorrhage growth (CT spot, black hole, and blend sign)

3/4 RCTs were TXA and 1/4 RCTs was rFVIIa

Objective

To evaluate the effect of hemostatic agents on the prevention of hemorrhage growth in patients with high-risk, spontaneous ICH

FAVORS

INTERVENTION

Outcome	Placebo (%)	Intervention (%)	OR (95% CI)	Forrest Plot
HE	40	27.4	0.84 (0.7 to 1.00)	
HE with black hole sign	-	-	0.61 (0.39 to 0.94)	
Dependence/Death	53.3	53.3	1.00 (0.86 to 1.17)	

FAVORS

PLACEBO

OVERALL CONCLUSION OF TXA

GENERAL HEMOSTASIS

REFERENCES

- 1. Cordonnier C, Demchuk A, Ziai W, Anderson CS. Intracerebral haemorrhage: current approaches to acute management. Lancet. 2018 Oct 6;392(10154):1257-1268. doi: 10.1016/S0140-6736(18)31878-6. Erratum in: Lancet. 2019 Feb 2;393(10170):406. PMID: 30319113.
- 3. Sheth, KN. Spontaneous Intracerebral Hemorrhage. N Engl J Med. 2022 Oct; 387:1589-1596. Available from: https://www.nejm.org/doi/full/10.1056/NEJMra2201449
- 4. Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, Skolnick BE, Steiner T; Recombinant Activated Factor VII Intracerebral Hemorrhage Trial Investigators. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2005 Feb 24;352(8):777-85. doi: 10.1056/NEJMoa042991. PMID: 15728810.
- 5. Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, Skolnick BE, Steiner T; FAST Trial Investigators. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2008 May 15;358(20):2127-37. doi: 10.1056/NEJMoa0707534. PMID: 18480205.
- 6. Mayer SA, Davis SM, Skolnick BE, Brun NC, Begtrup K, Broderick JP, Diringer MN, Steiner T; FAST trial investigators. Can a subset of intracerebral hemorrhage patients benefit from hemostatic therapy with recombinant activated factor VII? Stroke. 2009 Mar;40(3):833-40. doi: 10.1161/STROKEAHA.108.524470. Epub 2009 Jan 15. PMID: 19150875.
- 7. Gladstone DJ, Aviv RI, Demchuk AM, Hill MD, Thorpe KE, Khoury JC, Sucharew HJ, Al-Ajlan F, Butcher K, Dowlatshahi D, Gubitz G, De Masi S, Hall J, Gregg D, Mamdani M, Shamy M, Swartz RH, Del Campo CM, Cucchiara B, Panagos P, Goldstein JN, Carrozzella J, Jauch EC, Broderick JP, Flaherty ML; SPOTLIGHT and STOP-IT Investigators and Coordinators. Effect of Recombinant Activated Coagulation Factor VII on Hemorrhage Expansion Among Patients With Spot Sign-Positive Acute Intracerebral Hemorrhage: The SPOTLIGHT and STOP-IT Randomized Clinical Trials. JAMA Neurol. 2019 Dec 1;76(12):1493-1501. doi: 10.1001/jamaneurol.2019.2636. PMID: 31424491; PMCID: PMC6704754.
- 8. Al-Shahi Salman R, Law ZK, Bath PM, Steiner T, Sprigg N. Haemostatic therapies for acute spontaneous intracerebral haemorrhage. *Cochrane Database Syst Rev.* 2018;4:CD005951. doi: 10.1002/14651858.CD005951.pub4
- 9. CRASH-2 trial collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 2010; 376: 23–32
- 10. Sprigg N, Flaherty K, Appleton JP, Al-Shahi Salman R, Bereczki D, Beridze M, Christensen H, Ciccone A, Collins R, Czlonkowska A, Dineen RA, Duley L, Egea-Guerrero JJ, England TJ, Krishnan K, Laska AC, Law ZK, Ozturk S, Pocock SJ, Roberts I, Robinson TG, Roffe C, Seiffge D, Scutt P, Thanabalan J, Werring D, Whynes D, Bath PM; TICH-2 Investigators. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet. 2018 May 26;391(10135):2107-2115. doi: 10.1016/S0140-6736(18)31033-X. Epub 2018 May 16. PMID: 29778325; PMCID: PMC5976950.
- 11. Liu J, Nie X, Gu H, Zhou Q, Sun H, Tan Y, Liu D, Zheng L, Zhao J, Wang Y, Cao Y, Zhu H, Zhang Y, Yi L, Pu Y, Wen M, Yang Z, Sun S, Wang W, Zhao X, Liu L, Wang Y. Tranexamic acid for acute intracerebral haemorrhage growth based on imaging assessment (TRAIGE): a multicentre, randomised, placebo-controlled trial. Stroke Vasc Neurol. 2021 Jun;6(2):160-169. doi: 10.1136/svn-2021-000942. Epub 2021 Apr 1. PMID: 33795488; PMCID: PMC8258050.
- 12. Werring DJ. The STOP-AUST trial: a test for the spot sign in intracerebral haemorrhage. Lancet Neurol. 2020 Dec;19(12):964-965. doi: 10.1016/S1474-4422(20)30398-7. Epub 2020 Oct 28. PMID: 33128911.
- 13. Roberts I, Shakur H, Coats T, Hunt B, Balogun E, Barnetson L, Cook L, Kawahara T, Perel P, Prieto-Merino D, Ramos M, Cairns J, Guerriero C. The CRASH-2 trial: a randomised controlled trial and economic evaluation of the effects of tranexamic acid on death, vascular occlusive events and transfusion requirement in bleeding trauma patients. Health Technol Assess. 2013 Mar;17(10):1-79. doi: 10.3310/hta17100. PMID: 23477634; PMCID: PMC4780956.
- 14. CRASH-3 trial collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019 Nov 9;394(10210):1713-1723. doi: 10.1016/S0140-6736(19)32233-0. Epub 2019 Oct 14. Erratum in: CRASH-3 trial collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019 Nov 9;394(10210):1713-1723. doi: 10.1016/S0140-6736(19)32233-0. Epub 2019 Oct 14. Erratum in: Lancet. 2019 Nov 9;394(10210):1713-1723. doi: 10.1016/S0140-6736(19)32233-0. Epub 2019 Oct 14. Erratum in: Lancet. 2019 Nov 9;394(10210):1713-1723. doi: 10.1016/S0140-6736(19)32233-0. Epub 2019 Oct 14. Erratum in: Lancet. 2019 Nov 9;394(10210):1713-1723. doi: 10.1016/S0140-6736(19)32233-0. Epub 2019 Oct 14. Erratum in: Lancet. 2019 Nov 9;394(10210):1713-1723. doi: 10.1016/S0140-6736(19)32233-0. Epub 2019 Oct 14. Erratum in: Lancet. 2019 Nov 9;394(10210):1712. PMID: 31623894; PMCID: PMC6853170.. PMID: 31623894; PMCID: PMC6853170.
- 15. Al-Shahi Salman R, Law ZK, Bath PM, Steiner T, Sprigg N. Haemostatic therapies for acute spontaneous intracerebral haemorrhage. Cochrane Database Syst Rev. 2018 Apr 17;4(4):CD005951. doi: 10.1002/14651858.CD005951.pub4. PMID: 29664991; PMCID: PMC6494564.
- 16. Kosty, Jennifer et al. "latrogenic Vascular Complications Associated With External Ventricular Drain Placement". Operative Neurosurgery 72 (2013): ons208-ons213. Web.
- 17. Nie X, Liu J, Liu D, Zhou Q, Duan W, Pu Y, Yang Z, Wen M, Sun H, Wang W, Sun S, Gu H, Liu L. Haemostatic therapy in spontaneous intracerebral haemorrhage patients with high-risk of haematoma expansion by CT marker: a systematic review and meta-analysis of randomised trials. Stroke Vasc Neurol. 2021 Jun;6(2):170-179. doi: 10.1136/svn-2021-000941. Epub 2021 Apr 1. PMID: 33795489; PMCID: PMC8258086.

THANK YOU!

Gregory Taylor, PharmD, PGY1 Resident Princeton Baptist Medical Center **Gregory.Taylor@BHSALA.com** 54