

Understanding Surgeon Preferences for Spine Hardware & Osteobiologics

John Humphrey, MBA Senior Director, Medical Device Management

Disclosures

• The presenter has no real or perceived conflicts of interest related to this presentation.

Note: This program may contain the mention of suppliers, brands, products, services or drugs presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes and should not be perceived as an endorsement of any particular supplier, brand, product, service or drug.

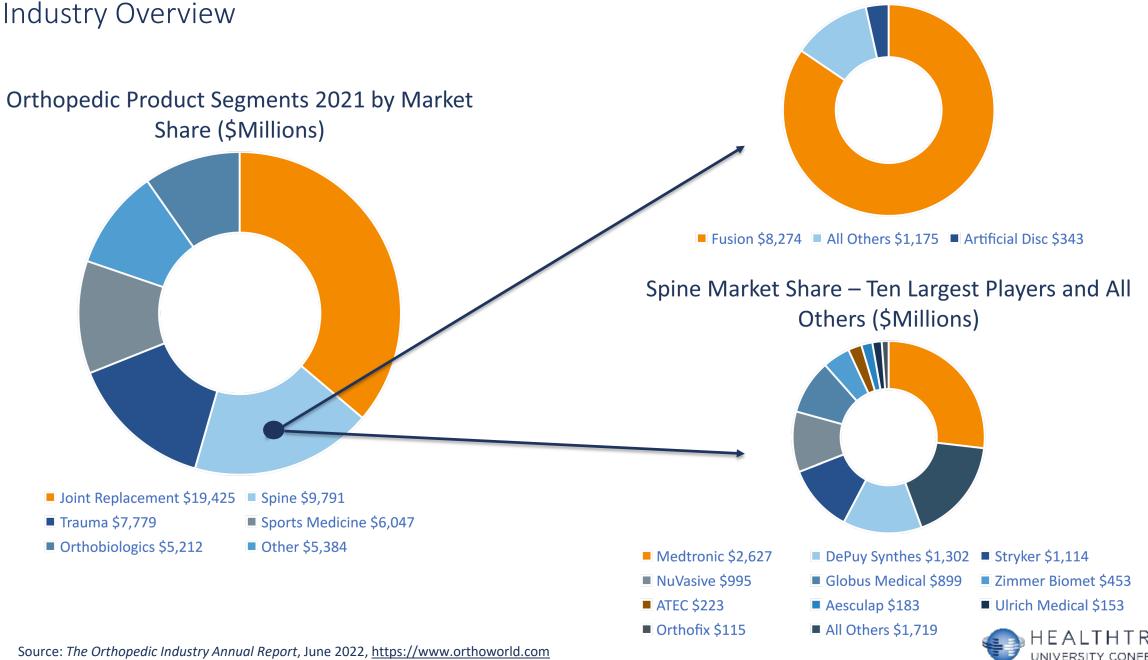
Learning Objectives

At the end of this session, participants should be able to:

- 1. Describe the basic components of cervical and thoracolumbar spine fusion procedures
- 2. Recall the rationale for 2-3 new and premium technologies in spine hardware and osteobiologics
- 3. Identify potential utilization opportunities and methods to reduce cost per case

Agenda

- Industry Overview
- Spine Anatomy
- Spinal Fusion: Basic Hardware Categories
- Common Spinal Fusion Procedures
- Osteobiologics
- Utilization Savings Opportunities



Industry Overview

Industry Overview

Spine Sales 2021 by Product Type (\$Millions)

Biologics

Examples:

Biologics

 Broad term for all biologic products

Orthobiologic

 Biologics used in spine and orthopedic procedures

Osteobiologic

Sources:

 Materials used to promote healing of fractures, fusions and bone voids

Biologic drugs	Aesthetic injectables	Surgical biologics			
Hormones	Vaccines	Wound coverings			
Tendon grafts	Blood products	Soft tissue grafts			
Amniotic tissue	Visco-supplementation	Cartilage grafts			
Allograft bone chips	Demineralized bone matrix	Synthetic bone graft substitutes			
Bone morphogenetic protein (BMP)	Cellular Bone Allograft				

https://www.fda.gov/about-fda/center-biologics-evaluation-and-research-cber/what-are-biologics-questions-and-answers https://orthoinfo.aaos.org/en/treatment/helping-fractures-heal-orthobiologics/ https://pubmed.ncbi.nlm.nih.gov/15517852/

Biologics

Examples:

Biologics

 Broad term for all biologic products

Orthobiologic

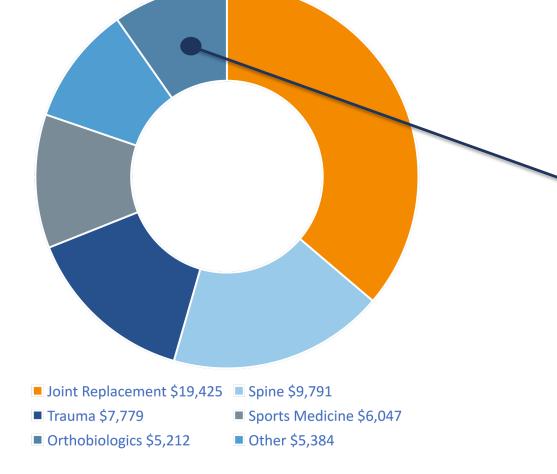
 Used in spine and orthopedic procedures

Osteobiologic

 Materials used to promote healing of fractures, fusions and bone voids

Bone morphogenetic protein	Cellular bone allograft			
Allograft bone chips	Demineralized bone matrix	Synthetic bone graft substitutes		
Amniotic tissue	Viscosupplementation			
Tendon grafts	Blood products	Soft tissue grafts		
Hormones	Vaccines	Wound coverings		
Biologic drugs	Aesthetic injectables	Surgical biologics		

Sources: https://www.fda.gov/about-fda/center-biologics-evaluation-and-research-cber/what-are-biologics-questions-and-answers https://orthoinfo.aaos.org/en/treatment/helping-fractures-heal-orthobiologics/ https://pubmed.ncbi.nlm.nih.gov/15517852/



Industry Overview – Orthobiologics

Orthopedic Product Segments 2021 by Market Share (\$Millions)1 Percent of cases with Osteobiologics by procedure type – H1 2021 (%)

84%

Recon 5% Trauma 11% Spine 84%

Sources:

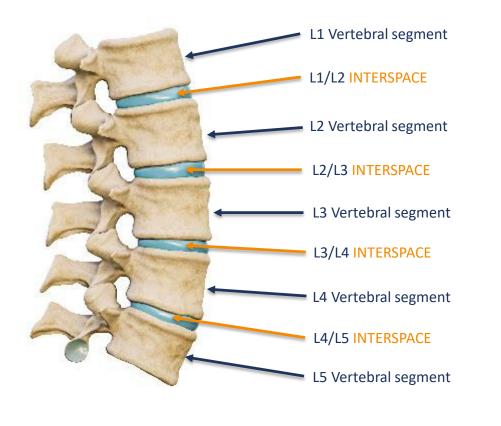
The Orthopedic Industry Annual Report, June 2022, <u>http://www.orthoworld.com</u> *Orthopedic Network News, Volume 32, Number 4*, October 2021, <u>http://www.OrthopedicNetworkNews.com</u>

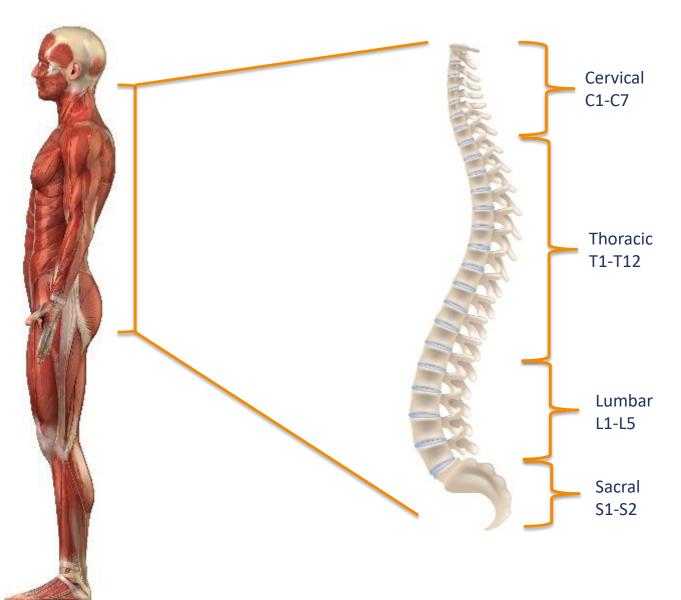
Spine Anatomy

What is spinal fusion and why is it performed?

Spinal fusion permanently connects two or more vertebrae in the spine to improve stability, correct a deformity or reduce pain.

Indications treated may include:

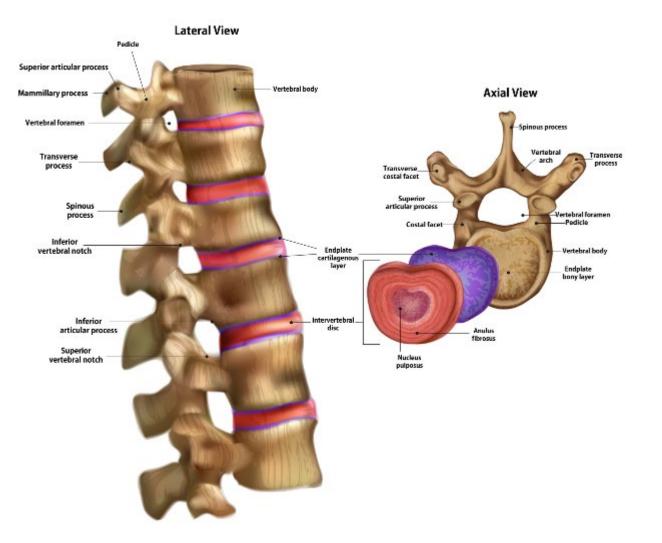

- Degenerative disk disease
- Spondylolisthesis
- Spinal stenosis
- Scoliosis
- Fractured vertebra
- Infection
- Herniated disk
- Tumor



Sources: Mayo Clinic - <u>https://mayocl.in/3RMCHbU</u> AAOS - <u>https://bit.ly/3ISxewf</u> iStockphoto.com

HEALTHTRUST[®]

Spine Anatomy & Terminology



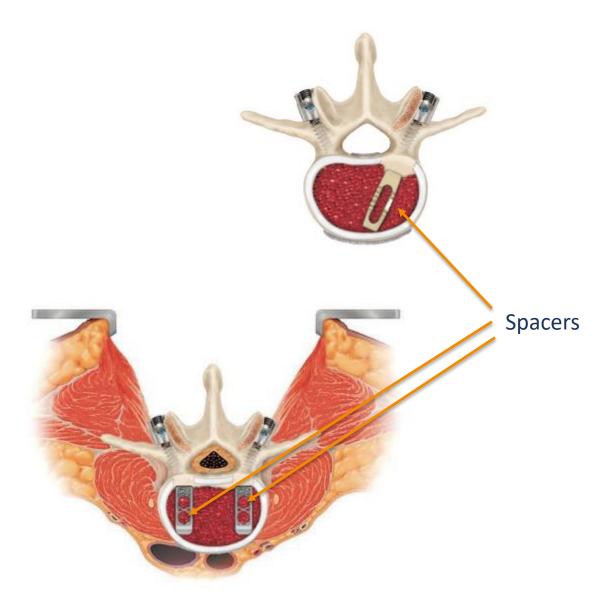
Source: iStockphoto.com

Spine Anatomy & Terminology

Key structures to know:

- Vertebral body
- Intervertebral disk
- Transverse process
- Spinous process
- Vertebral foramen
- Endplate bony layer

Images: iStockphoto.com



Spine Fusion: Basic Hardware Categories

Interbody Spacers

- Implanted in interbody space
- Hollow center for placement of osteobiologic
- Size, shape and quantity per level differs by approach, technique and manufacturer
- Common materials:
 - Machined Bone (Allograft)
 - Polyether Ether Ketone (PEEK)
 - Titanium

Interbody Spacers – 'Premium' Technologies

- Expandable cage
 - Less invasive surgery

- 3D Printed titanium
 - Improved osseointegration

Confidential: Not for distribution

- Surface coatings (Titanium or Hydroxyapatite)
 - Improved osseointegration

Sources:

<u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735473/</u> <u>https://www.thespinejournalonline.com/article/S1529-9430(21)01057-3/fulltext</u> <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661570/</u> *Orthopedic Network News, Volume 32, Number 4,* October 2021, <u>http://www.OrthopedicNetworkNews.com</u>

Plate & Screw Systems

- Add stability to the fusion and prevent loosening of interbody spacer
- Threaded holes for screws that anchor into the vertebral body
- Most frequently used for anterior fusions

• 1 plate may be used for 1 level or for multiple levels

Sources: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386531/

Orthopedic Network News, Volume 32, Number 4, October 2021, http://www.OrthopedicNetworkNews.com

Stand-alone Interbody (SIB) & Integrated Plates

Combines interbody spacers with functions of a screw and plate

May use screws or anchors that attach spacer to vertebrae

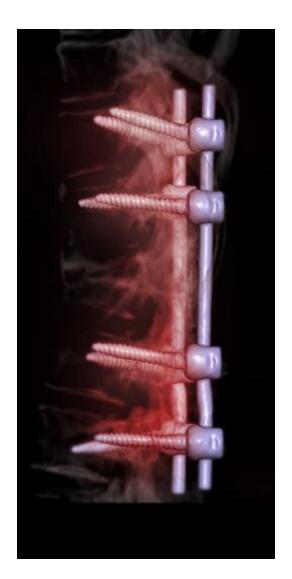
Integrated plates connect plate to interbody spacer to prevent migration and provide stability

Source:

22

SIB with screws

SIB with anchors


Lateral spacer with integrated plate

Pedicle Screw Systems

- Provide strength and support to fusion while it heals
- Screws are placed above and below interbody space to be fused
- Screw trajectory through the pedicle
- Rods connect to screws
 - Connection in 'Tulip'
 - Set screws
- Minimally invasive systems allow better visibility and use in small incisions
 - Modularity
 - Cannulation

Sources: iStockphoto

Orthopedic Network News, Volume 32, Number 4, October 2021, http://www.OrthopedicNetworkNews.com

Confidential: Not for distribution

Standard Modular Pedicle Screw – Premium Options Set screw Set screw Tulip Modular pedicle screws Used in minimally invasive procedures • **Pedicle Screw** Post or shank Pieces should cost the same together as ۲ regular screw Cannulated screws Wire sets trajectory to place screws **Cannulated Screw** under X-ray/navigation Fenestrated pedicle screw Fenestrated pedicle screws with cement augmentation Used with bone cement Osteopenic or tumor patients

Sources:

24

Orthopedic Network News, Volume 32, Number 4, October 2021, http://www.OrthopedicNetworkNews.com https://doi.org/10.31616/asj.2018.12.6.1053

Confidential: Not for distribution

EALTHTRUST¹

Common Spinal Fusion Procedures

Procedure Names

- Names come from region of the spine, approach (where and how the surgeon reaches the spine) and implant used
- Procedure names are commonly known (sometimes phonetically) by their acronym

Examples:

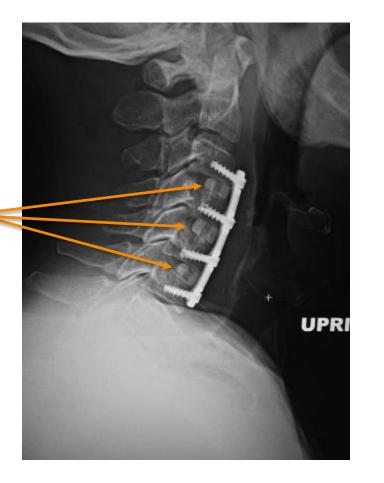
Anterior Cervical Discectomy and Fusion (ACDF)

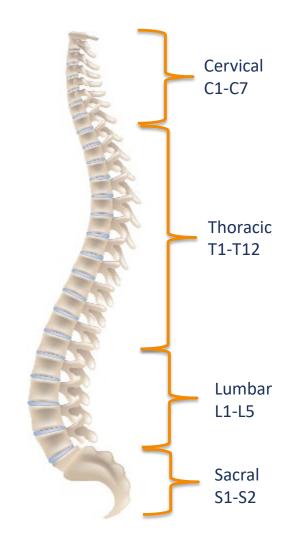
Anterior Lumbar Interbody Fusion (ALIF)

Posterior Lumbar Interbody Fusion (PLIF)

Transforaminal Lumbar Interbody Fusion (TLIF)

Source: J Spine Surg. 2015 Dec; 1(1): 2–18

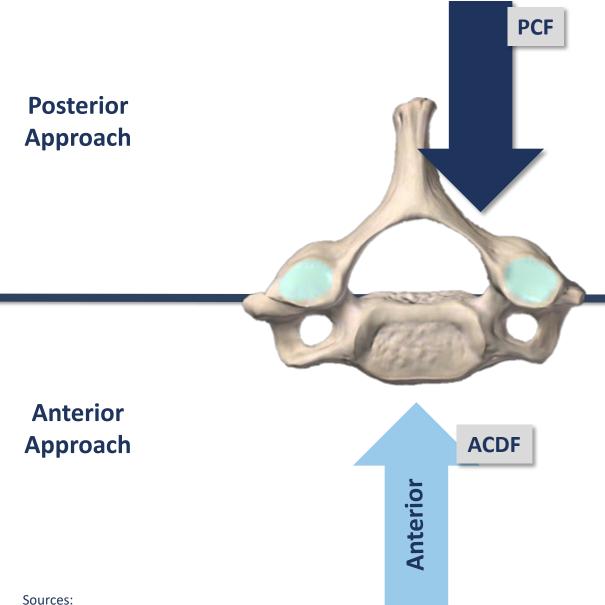



Spine Fusion Levels

Example:

"3 Level ACDF" C3-C6

- Plate spans C3–C6
- Spacer at C3–4, C4–5, C5–6



Source: https://medapparatus.com/NeckSpine/Images/ACDF_lateral.jpg

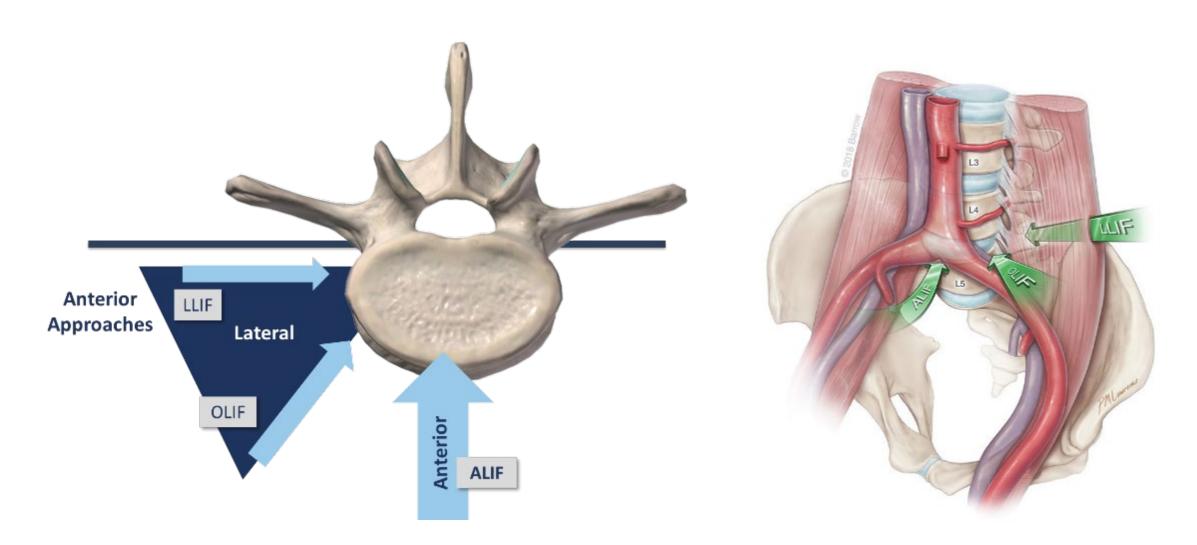
Procedure Names – Cervical fusions

Posterior Cervical Fusion (PCF)

- Pedicle Screws
- Rods
- Osteobiologics

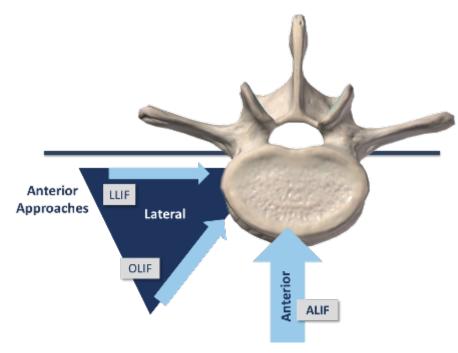
Anterior Cervical Discectomy and Fusion (ACDF)

- Spacer
- Plate and screws
- Osteobiologic


OR

- SIB-C + screws
- Osteobiologic

Anterior Approach Fusions – ALIF, LLIF, OLIF



Anterior Lumbar Interbody Fusion (ALIF)

Accessed through the abdomen

- Usually requires vascular access surgeon for approach
- Larger size spacer stability


Hardware Components:

- Interbody spacer
- Plate + screws
- Osteobiologic

or

- Standalone interbody spacer
- Screws
- Osteobiologic

Be sure to understand the components used

Sources: J Spine Surg. 2015 Dec; 1(1): 2-18

Lateral Lumbar Interbody Fusion (LLIF)

- Less invasive than ALIF
- Approached from side of the abdomen
 - Other names from vendor specific techniques
 - Direct lateral (DLIF)
 - Extreme lateral (XLIF)
- Oblique Lateral Lumbar Interbody fusion (OLIF) usually uses same implant, different approach

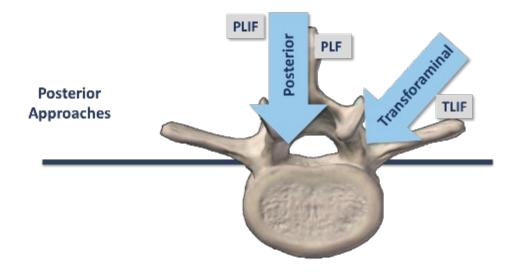
Anterior Approaches Lateral OLIF ALIF

Sources: Operative Techniques in Orthopaedics, 2017-12-01, Volume 27, Issue 4, Pages 223-230 Orthopedic Network News, Volume 32, Number 4, October 2021, <u>http://www.OrthopedicNetworkNews.com</u>

Hardware components

- Lateral spacer
- Osteobiologic

A plate and screws are sometimes used to prevent migration of the implant


Posterior Approach – Interbody Fusions*

- Both procedures have incision in the back
- PLIF usually requires 2 interbody spacers
- TLIF may be curved in shape
- Always understand number of interbodies being used

Posterior Lumbar Interbody Fusion (PLIF) Hardware components

- Spacers usually x2 per level
- Osteobiologic

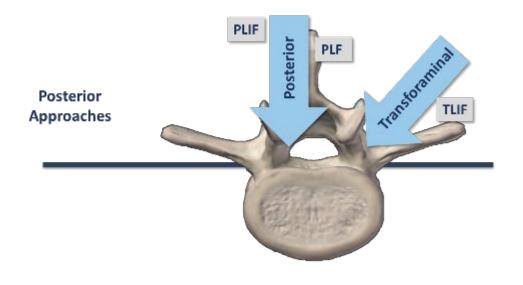
Transforaminal Lumbar Interbody Fusion (TLIF)

- Spacer usually x1 per level
- Osteobiologic

Source:

Orthopedic Network News, Volume 32, Number 4, October 2021, <u>http://www.OrthopedicNetworkNews.com</u> Globus Medical

³⁸ *Usually includes posterolateral fusion with pedicle screws


Confidential: Not for distribution

Posterior Approach – Non-Interbody Fusion

Posterolateral Lumbar Fusion (PLF)

- Instrumented = using pedicle screws and rods
- Non-instrumented = osteobiologic only

Hardware components: 1 level

- Pedicle screws (4)
 - 2 screws added to each additional level
- Rods
- Set screws (1 for each screw)
- Osteobiologic

Each additional level includes 2 more pedicle screws for bilateral fusions

Source: Orthopedic Network News, Volume 32, Number 4, October 2021, http://www.OrthopedicNetworkNews.com

Osteobiologics

Placement of Osteobiologics

Most common locations for placement of bone graft:

• Filling space in interbody spacer

• Backfilling the disk space (PLIF and TLIF most commonly)

 Posterolateral Fusion – posterolateral gutters over transverse processes

Osteobiologic Graft Types

Autograft – Graft from same individual as recipient

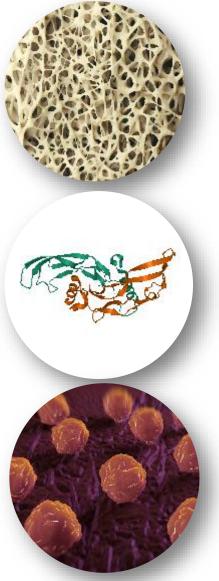
- Illiac crest bone graft Gold standard
- Local bone from decompression, decortication for fusion

- Demineralized bone matrix (DBM)
- Cell based allograft

Synthetic – Graft made from calcium compounds found in mineral phase of bone

- Zero risk of donor disease transmission
- Long shelf life

Growth factors and peptides – Proteins or protein fragments used to provide an osteoinductive signal to cells


- Highly osteoinductive
- RCT data for FDA approval

Sources:

Operative Neurosurgery: <u>July 2021 - Volume 21 - Issue Supplement_1 - p S2-S9</u> Images: iStockphoto; Bioventus

Osteobiologics: Properties of Action

Source: Images: iStockphoto

Osteoconduction

Scaffold to support new bone formation (bone cannot grow in an empty space)

Osteoinduction

Signals to initiate the bone healing cascade (this comes from growth factors - body's chemical messengers)

Osteogenesis

Cells for direct bone formation, including mesenchymal stem cells and osteoprogenitor cells (new bone production)

Osteobiologic Formats – Handling Characteristics

- Often heard from surgeons: "I like XYZ biologic because it handles well..."
- What does this mean? And, why does one osteobiologic work for one surgeon and not another?
- Every format is designed to do a different job. Examples (DBM):
 - Putty moldable to fit a void
 - Fiber holds graft together during implantation
 - Cancellous sponge strip compresses and rebounds
 - Gel push through small opening from a syringe

A <u>Simple</u> Formula for Osteobiologics Preferences*

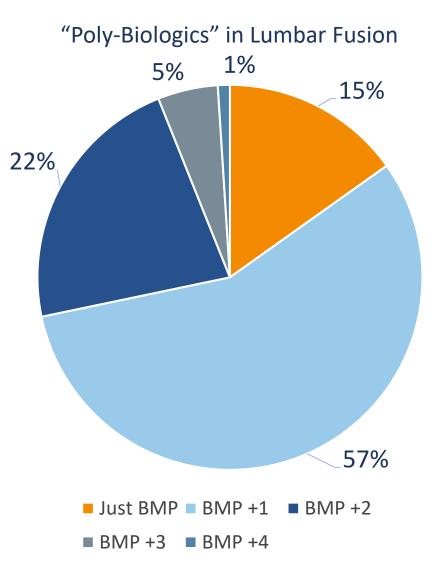
Graft type preference (Autograft, Allograft, Synthetic, etc.)

+

Biologic "properties of action" needed (Osteoconductive, Osteoinductive, Osteogenic)

+

Handling characteristics needed (What does the surgeon need the graft to do during the case?)


*There can be MANY more considerations – these are some of the basics

Poly-Biologics

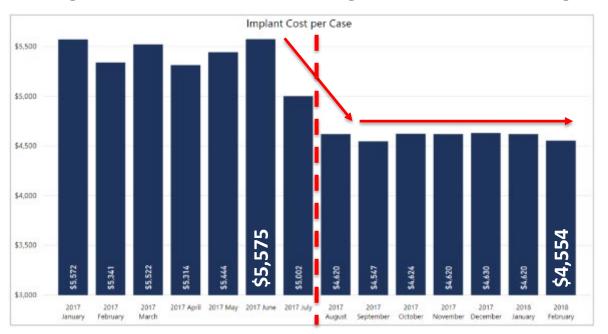
Commonly seen – use of multiple biologics

- Surgeon's own "cocktail"
- What's in the mix based on:
 - Desired biologic "properties of action"
 - Handling characteristics

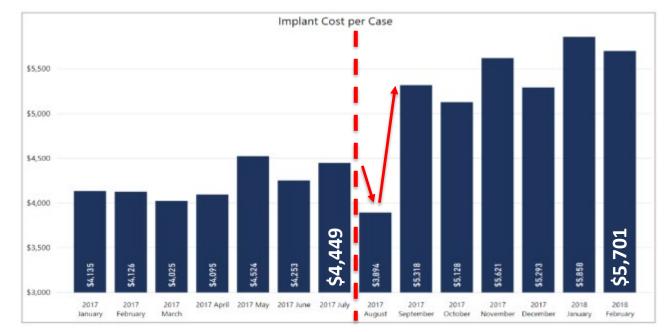
Orthopedic Network News, Volume 32, Number 4, October 2021, http://www.OrthopedicNetworkNews.com

Commonly Used Categories of Bone Graft Material With Properties of Action

Product type	Price/cc ¹	Osteoconductive	Osteoinductive	Osteogenic
Bone Chips	\$11	\checkmark		
Demineralized Bone Matrix (DBM)	\$60	\checkmark	\checkmark	
Synthetic Bone Void Fillers	\$94	\checkmark		
Cellular Bone Allograft	\$538	\checkmark	\checkmark	\checkmark
Growth Factors & Peptides	\$887	\checkmark	\checkmark	


Sources: Orthopedic Network News, Oct 2021 https://www.mdpi.com/2227-9059/7/4/75/htm

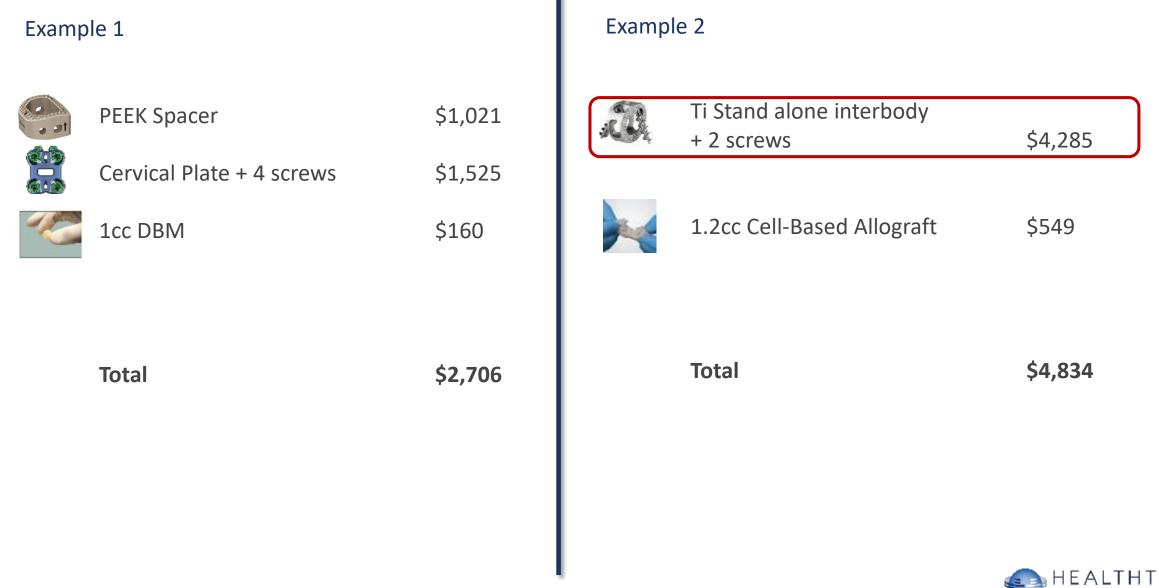
Utilization Savings Opportunities


Utilization Monitoring to Prevent Savings Erosion Post-Contract Launch

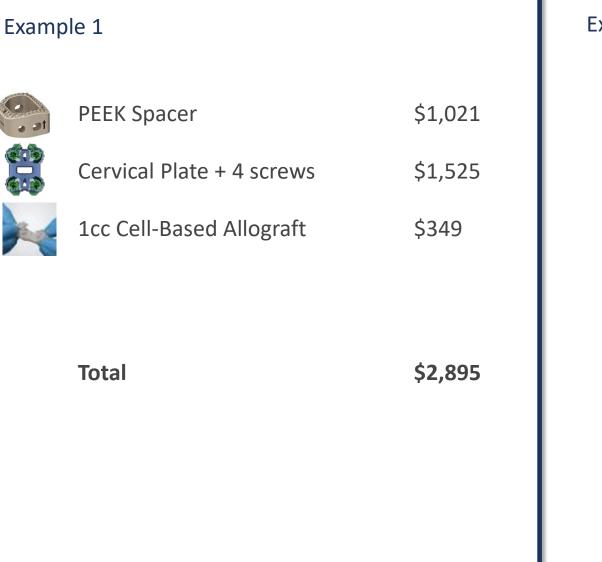
Facility A Average Cost of THA w/ MDM Sourcing & Utilization Monitoring

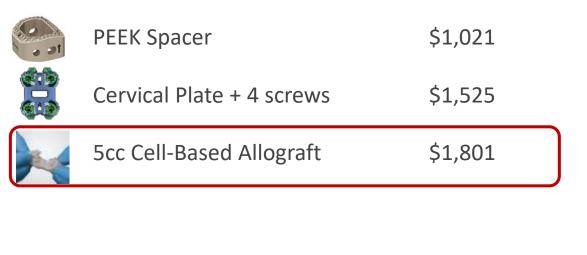
- Continuous monitoring allows facilities to maintain case cost reductions achieved in sourcing
- Vendor knowledge of monitoring pre-empts abuse of on-contract premium products

Facility B Average Cost of THA w/ MDM Sourcing Only



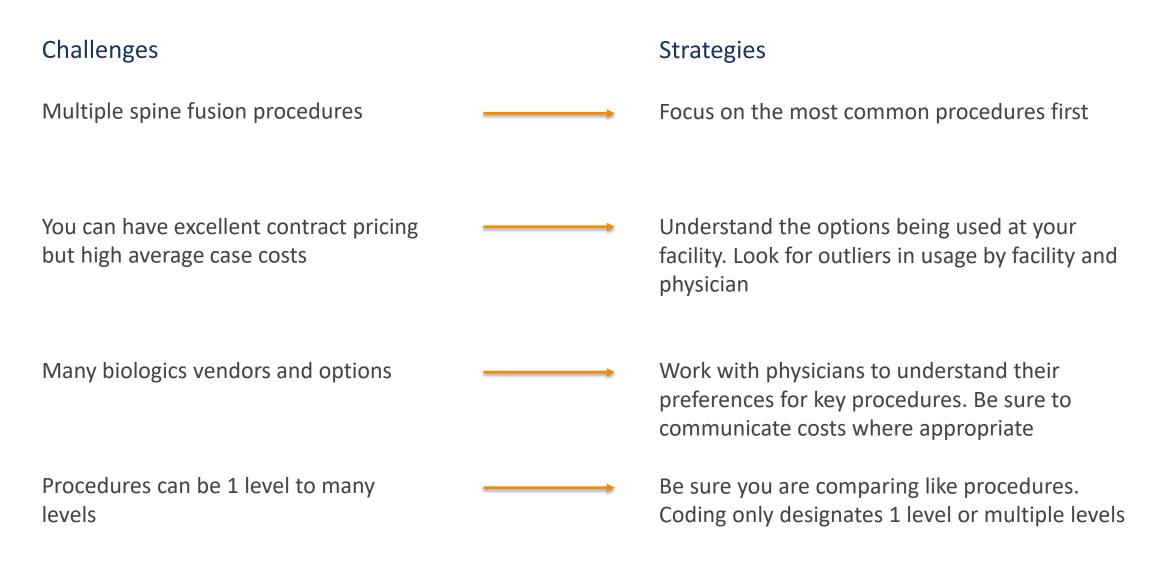
• Without utilization monitoring, vendors can quickly erase cost savings by using on-contract premium products


New Contracts Effective Date – Aug 2017


Construct Variation in Similar Cases – 1 Level ACDF Example*

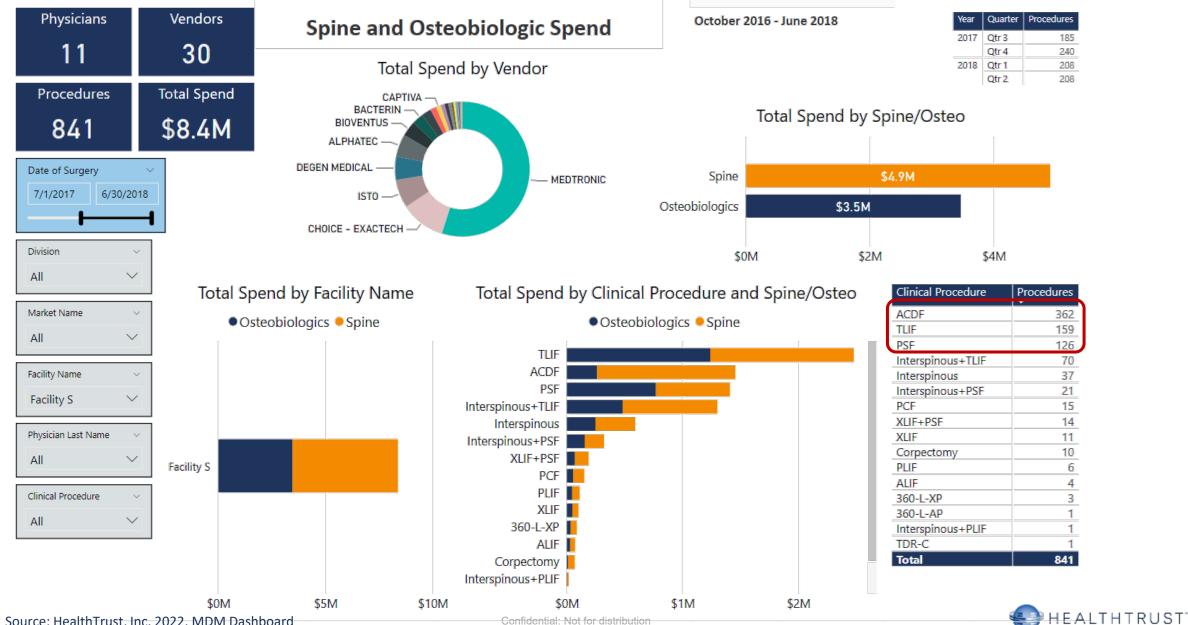
Right Sizing Osteobiologics - 1 Level ACDF Example

Example 2

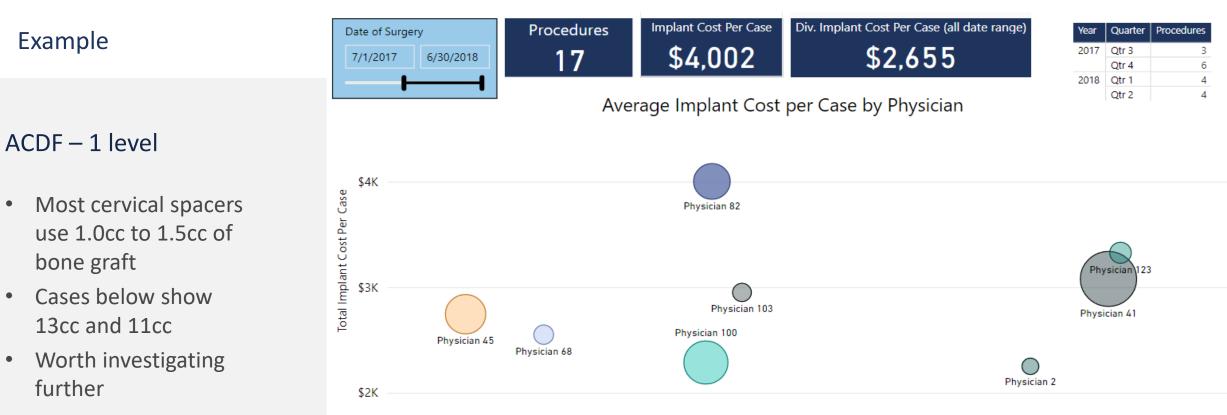


Total

\$4,347



Challenges: Managing Spine & Osteobiologics Utilization



Example dashboard

Confidential: Not for distribution

-	Physician Last Name	Proc - Levels	Spine/Osteo	Clinical Platform	Vendor	Product Name	1 1				Total Spend
6720	Physician 82	ACDF-1	Osteobiol	Allograft - Specialized			2.7	0	3		
				Synthetic - Bioactive			5.0	0	1		
			Spine	Cervical Plate - 1 Level				0	1	1	
				Cervical Spacer				0	1		
				Cervical Plate Screw				0	4		
	Total							0	10	\$667	\$4,87
6913 Phys	Physician 82	ACDF-1	Spine	Cervical Plate - 1 Level				0	1		
				Cervical Spacer				0	1		
				Cervical Plate Screw				1	4		
			Osteobiol	Allograft - Specialized			2.7	0	2		
				Synthetic - Bioactive			5.0	0	1		
	Total							1	9	\$573	\$4,35

Source: HealthTrust, Inc. 2022. MDM Dashboard

Summary

Pulling It All Together

- Focus on the most common procedures. Spine cases can be complicated and done many different ways
- Compare like cases when considering spine costs
 - Compare same procedure types (e.g. ACDF vs ACDF)
 - Compare same number of levels
- Look to osteobiologics first for potential waste
- Surgeons are the most valuable ally for utilization savings
 - Be sure they understand the true cost differences between products
- Tools like dashboards from Medical Device Management (MDM) can greatly reduce the work involved

Thank you...

John Humphrey John.Humphrey@healthtrustpg.com

