

When Planets Collide: The Intersection of Internal Medicine & Oncology

Andrew Li, PharmD, BCOP

07/23/2023

Disclosures

- The presenter has served as a consultant on advisory boards for Pfizer Inc. and Daiichi Sankyo
- All relevant financial relationships have been mitigated
- This presenter will discuss off-label use of Vedolizumab

Note: This program may contain the mention of brands, products, services or drugs presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes and should not be perceived as an endorsement of any particular brand, product, service or drug.

Learning Objectives

At the end of this session, participants should be able to:

- 1. Recall mechanisms of action of pathologic phenomena regarding oncologic emergencies.
- 2. Recognize signs and symptoms of disease processes and diagnostic criteria of oncologic emergencies.
- 3. Identify management strategies and supportive care plans for oncologic emergencies.

Topics to Cover

- Febrile Neutropenia
- Tumor Lysis Syndrome
- Differentiation Syndrome
- Immune-related Adverse Events
- Cytokine Release Syndrome (CAR-T Toxicities)

PLAYING TO WIN

E Credit Deadline: 8/25/23

- Chemotherapy agents damage rapidly dividing cells act upon myeloproliferative cells in the bone marrow, resulting in neutropenia
- Unopposed gram-negative bacteremia has a mortality rate of up to 70% in neutropenic patients with no antibiotics
 - Mortality rate has reduced to as low as 4% with refinement of febrile neutropenia treatment
- $\circ~$ Fever definition:
 - > 38.3 C (101 F): single oral measurement **OR** > 38.0 C (100.4 F) sustained over a 1-hr period
- $\circ~$ Neutropenia definition:
 - ANC (absolute neutrophil count) of < 500 cells/mm³ OR ANC that is expected to decrease to
 < 500 cells/mm³ during the next 48 hr
- Fever during chemotherapy-induced neutropenia may be the only indication of a severe underlying infection

Source: Zimmer AJ, Freifeld AG. Optimal management of neutropenic fever in patients with cancer. J Oncol Pract. 2019;15(1):19-24. Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011;52(4):e56-93.

PLAYING <mark>||</mark>TO WIN

- Up to 50% of patients with solid tumors and >80% of those with hematologic malignancies will develop febrile neutropenia during <u>>1</u> chemotherapy cycle
- $\,\circ\,$ Documented infections occur in 20%–60% of febrile episodes
 - Common cause of fever is translocation of enteric bacteria into the bloodstream¹

Source: Zimmer AJ, Freifeld AG. Optimal management of neutropenic fever in patients with cancer. J Oncol Pract. 2019;15(1):19-24.

Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011;52(4):e56-93.

PLAYING TO WIN

CE Credit Deadline: 8/25/23

Assessment (Risk for infectious complications)

High-risk (Requires admission and empiric therapy):

- Anticipated prolonged (>7 days) and profound neutropenia (ANC <100 cells mm³)
- Significant co-morbid conditions (e.g. hypotension, pneumonia, new-onset abdominal pain, or neurologic changes)

Low-risk patients (outpatient oral empiric therapy)

• Anticipated brief (<7 days duration) neutropenic periods or no or few comorbidities

Formal risk classification with the Multinational Association for Supportive Care in Cancer (MASCC) scoring system:

- High-risk: MASCC score < 21
- Low-risk: MASCC score > 21

Source: Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011;52(4):e56-93.

PLAYING TO WIN

Assessment (Risk for infectious complications)

MASCC Risk-Index Score			
Characteristic	Weight		
No-mild illness symptoms	5		
Moderate illness symptoms	3		
No hypotension	5		
No COPD	4		
Solid tumor or hematologic malignancy with no previous fungal infection	4		
No dehydration	3		
Outpatient status	3		
Age < 60	2		

Source: National Comprehensive Cancer Network. Prevention and Treatment of Cancer-Related Infections(Version 3.2022). https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf Accessed May 17, 2023.

CE Credit Deadline: 8/25/23

Treatment

- Approach: Administer initial empirical antibiotic therapy to prevent serious morbidity and mortality.
- Due to its association with high mortality rates, coverage of P. aeruginosa has driven the recommended antibiotic choices.
 - Despite gram-positive organisms being more common, gram-negative bacteremias are associated with greater mortality (5% vs. 18%).
- High-risk patients (Hospitalization for IV empirical antibiotics):
 - Cefepime (antipseudomonal b-lactam agent)
 - Meropenem or imipenem-cilastatin (carbapenem)
 - Piperacillin-tazobactam
- No single empirical therapeutic regimen has emerged as clearly superior to others.

Source: National Comprehensive Cancer Network. Prevention and Treatment of Cancer-Related Infections(Version 3.2022). https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf Accessed May 17, 2023.

PLAYING TO WIN

Treatment

Clinically stable +/persistent fever* No change in antibiotics except for new clinical or microbiologic data

Documented infection:

Treat for recommended duration of infection

Unknown infection:

Wait for fever resolution,

- D/C therapy upon ANC > 500 cells/mcL
- If ANC < 500 cells/mcL, several options:
 - D/C therapy
 - De-escalate to prophylaxis
 - Continue regimen until > 500 cells/mcL

Source: National Comprehensive Cancer Network. Prevention and Treatment of Cancer-Related Infections(Version 3.2022). https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf Accessed May 17, 2023.

PLAYING TO WIN

CE Credit Deadline: 8/25/23

Treatment

Source: National Comprehensive Cancer Network. Prevention and Treatment of Cancer-Related Infections(Version 3.2022). https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf Accessed May 17, 2023.

PLAYING TO WIN

CE Credit Deadline: 8/25/23

Vancomycin

- Vancomycin is not recommended as a standard part of the initial antibiotic regimen for febrile neutropenia
- $\circ~$ Only consider for the following:
 - Suspected catheter-related infection
 - Skin or soft-tissue infection
 - o Pneumonia
 - Hemodynamic instability
 - Blood cultures demonstrating growth for G+ bacteria before final identification & susceptibility
 - Known colonization of MRSA

\circ If initiated, reassess within 2–3 days of initiation

Source: Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011;52(4):e56-93.

National Comprehensive Cancer Network. Prevention and Treatment of Cancer-Related Infections(Version 3.2022). https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf Accessed May 17, 2023.

PLAYING TO WIN

CE Credit Deadline: 8/25/23 Confidential: Not for distribution HEALTHTRUST[°] / 15

Special Considerations

• Penicillin Allergy:

- Patients with immediate-type hypersensitivity reaction to penicillin should be treated with ciprofloxacin plus clindamycin or aztreonam plus vancomycin
- Very lower rate of carbapenem cross-reactivity (0.87%), compared to with cephalosporins (2.1-16.5%)⁴
- G-CSF Use During Febrile Neutropenia²:
 - G-CSFs are not generally recommended for treatment of febrile neutropenia, unless for serious infections

Source: Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011;52(4):e56-93.

Kedzior SK. Overcoming Resistance: Antibiotic Guidance for Multidrug-Resistant Febrile Neutropenia in Patients with Cancer. Journal of Hematology Oncology Pharmacy . 2021;11(2):95-104.

PLAYING TO WIN

Take Home Points

- Complete a full patient work-up & distinguish patients from high-risk or low-risk based on the MASCC criteria
- Initiate broad-spectrum antibiotics that have gram-negative Pseudomonal coverage
- Vancomycin may be considered depending on risk factors & is not to be started empirically
- Evaluate the patient day-by-day & adjust antibiotics based on clinical features & laboratory findings

PLAYING

E Credit Deadline: 8/25/23

Introduction

- Acute promyelocytic leukemia (APL) is an aggressive subtype of acute myeloid leukemia (AML)
- Promyelocytes accumulate in the blood & bone marrow & displace other blood cells, (RBC, WBC, & platelets)
- \circ Symptoms of APL
 - Neutropenia: Fevers, susceptibility to infection
 - Anemia: Fatigue
 - Thrombocytopenia: Bleeding associated with DIC

Source: Rego EM, De Santis GC. Differentiation syndrome in promyelocytic leukemia: clinical presentation, pathogenesis and treatment. Mediterr J Hematol Infect Dis. 2011;3(1):e2011048.

PLAYING TO WIN

AML Classification

PLAYING TO WIN

CE Credit Deadline: 8/25/2

Image by A. Rad and M. Häggström. CC-BY-SA 3.0 license. - Image:Hematopoiesis (human) diagram.png by A. Rad

PLAYING TO WIN

CE Credit Deadline: 8/25/23

- Differentiation syndrome (DS) is a serious complication that can be life-threatening in patients with acute promyelocytic leukemia (APL)
- Cumulative incidence of DS across all treatment regimens was 17.7%.⁶
- Occurs during Induction therapy (all-trans retinoic acid (ATRA) and/or arsenic trioxide) activates:
 - \circ Cascade of pathophysiologic mechanisms into cytokine release (IL-1, IL- β , IL- δ , IL- δ
 - Systemic inflammatory response syndrome (SIRS), leading to endothelium damage with capillary leak syndrome & occlusion of microcirculation.

Source: Rego EM, De Santis GC. Differentiation syndrome in promyelocytic leukemia: clinical presentation, pathogenesis and treatment. Mediterr J Hematol Infect Dis. 2011;3(1):e2011048. Gasparovic L, Weiler S, Higi L, Burden AM. Incidence of differentiation syndrome associated with treatment regimens in acute myeloid leukemia: a systematic review of the literature. J Clin Med. 2020;9(10):E3342.

Sanz MA, Montesinos P. How we prevent and treat differentiation syndrome in patients with acute promyelocytic leukemia. Blood. 2014;123(18):2777-2782.

- Symptoms
 - Mild:
 - Unexplained fever
 - Weight gain
 - Peripheral edema
 - \circ Severe:
 - Dyspnea with interstitial pulmonary infiltrates
 - Pleuro-pericardial effusion
 - Hypotension
 - Acute renal failure

Source: Rego EM, De Santis GC. Differentiation syndrome in promyelocytic leukemia: clinical presentation, pathogenesis and treatment. Mediterr J Hematol Infect Dis. 2011;3(1):e2011048. Image Source: https://pixabay.com/illustrations/people-emotions-feelings-7375857/

PLAYING TO WIN

CE Credit Deadline: 8/25/23

Treatment

- Due to the high morbidity & mortality of DS, initiate therapy at the earliest suspicion
- \circ Standard regimen is Dexamethasone 10 mg IV BID
- DS, however, shares signs & symptoms that are observed with other complications
- Findings supporting differential diagnosis does not rule out concomitant DS; warrants empiric therapy to cover all suspected complications
- Vast majority of patients presenting with life-threatening complications of DS have a dramatic resolution with early interventions

Source: Rego EM, De Santis GC. Differentiation syndrome in promyelocytic leukemia: clinical presentation, pathogenesis and treatment. Mediterr J Hematol Infect Dis. 2011;3(1):e2011048. Sanz MA, Montesinos P. How we prevent and treat differentiation syndrome in patients with acute promyelocytic leukemia. Blood. 2014;123(18):2777-2782.

Supportive Care Measures

- Furosemide used to treat fluid overload
- Renal replacement therapy for severe, refractory acute renal failure and/or fluid overload in the context of a vascular leak syndrome
- Control the coagulopathy in the setting of high fluid overload:
 - Prefer use of cryoprecipitate, fibrinogen & coagulation factor concentrates instead of freshfrozen plasma
- Careful fluids and/or vasopressor agents for hypotension, along with empirical therapy with intravenous antibiotics

Source: Sanz MA, Montesinos P. How we prevent and treat differentiation syndrome in patients with acute promyelocytic leukemia. Blood. 2014;123(18):2777-2782.

Source: Zhou GB, Zhang J, Wang ZY, Chen SJ, Chen Z. Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy. Philos Trans R Soc Lond B Biol Sci. 2007;362(1482):959-971.

XOSPATA® (gilteritinib) [package insert]. Northbrook, Illinois: Astellas Pharma Inc.; 2022.

IDHIFA® (enasidenib) [package insert]. Summit, NJ: Celgene Corporation; 2020.

TIBSOVO[®] (ivosidenib) [package insert]. Boston, MA: Servier Pharmaceuticals LLC.; 2022.

PLAYING TO WIN

CE Credit Deadline: 8/25/23

Drug Name	AML-Subtype	Rate of Differentiation Syndrome	
Gilteritinib*	FLT-3 mutation	3%	
lvosidenib*	Isocitrate dehydrogenase-1 (IDH1) mutation	25% of newly diagnosed 19% of relapsed/refractory	
Enasidenib**	Isocitrate dehydrogenase-2 (IDH2) mutation	14%	
* DS seen as early as 1 day & up to 3 months starting treatment			

** DS seen as early as 1 day & up to 3 months starting treatment

Source: XOSPATA[®] (gilteritinib) [package insert]. Northbrook, Illinois: Astellas Pharma Inc.; 2022. IDHIFA[®] (enasidenib) [package insert]. Summit, NJ: Celgene Corporation; 2022. TIBSOVO[®] (ivosidenib) [package insert]. Boston, MA: Servier Pharmaceuticals LLC.; 2022.

PLAYING TO WIN

Take Home Points

- Seen in AML (acute myeloid leukemia), particularly the AML-variant of APL (acute promyelocytic leukemia) – usually is a diagnosis of exclusion
- Agents that are known to induce differentiation syndrome include: ATRA (all trans retinoic acid), arsenic trioxide, enasidenib, gilteritinib & ivosidenib
- Initiate Dexamethasone at 10 mg IV Q12hr. & implement other supportive care measures as necessary

PLAYING

E Credit Deadline: 8/25/23

Introduction

- Phenomenon when a large number of cancer cells die quickly, releasing their contents into the blood
- Levels of uric acid, potassium & phosphorus rise faster than the kidneys can remove them
- Changes in uric acid, K+, Phos, Ca²⁺, can affect organ function (kidneys, heart, brain, muscles, GI tract)
- Patients with high tumor burden of the following cancers are at greatest risk of developing TLS:
 - Non-Hodgkin lymphoma (Burkitt, Diffuse Large B-Cell Lymphoma)
 - Hodgkin Lymphoma

Source: Howard SC, Jones DP, Pui CH. The tumor lysis syndrome. N Engl J Med. 2011;364(19):1844-1854.

PLAYING <mark>||</mark>TO WIN

Myocardial infarction, pulmonary embolism Acute phosphate nephropathy

Paresthesia, muscle spasms, cramps, tetany, circumoral numbness & seizures

Urate Nephropathy

Cardiac arrhythmias, muscle weakness or paralysis \rightarrow Death

Source: Howard SC, Jones DP, Pui CH. The tumor lysis syndrome. N Engl J Med. 2011;364(19):1844-1854.

PLAYING

CE Credit Deadline: 8/25/23

Body: https://pixabay.com/vectors/man-silhouette-stand-straight-308387/ Heart: <u>https://pixabay.com/vectors/human-heart-blood-flow-1700453/</u> Kidney: https://pixabay.com/vectors/kidney-anatomy-human-man-organ-147499/

PLAYING TO WIN

Prevention/Treatment

- Hydration with NS
 - $\odot~2.5{-}3$ L/m²/24hr to maintain urine output > 100 mL/hr
- Hyperuricemia Management
 - \circ Allopurinol (MOA: Blocks the conversion: hypoxanthine \rightarrow xanthine \rightarrow uric acid)
 - Renally excreted, may require dose reduction in renal dysfunction
 - Does not remove the existing uric acid. Takes a few days to reduce uric acid concentration
 - Rasburicase (MOA: Converts uric acid into inactive metabolite, allantoin)
 - Decreases serum uric acid concentrations immediately
 - $\circ~$ Very \$
 - Dosing is variable. Can be weight-based or flat-dose of 6 mg, 3 or 4.5 mg may be considered for uric acid levels < 12 mg/dL

Source: Matuszkiewicz-Rowinska J, Malyszko J. Prevention and treatment of tumor lysis syndrome in the era of onco-nephrology progress. Kidney Blood Press Res. 2020;45(5):645-660.

PLAYING TO WIN

Prevention/Treatment (Electrolyte Abnormality Management)

• Hyperphosphatemia:

- Oral non-calcium phosphate binders (sevelamer)
- Hyperkalemia:
 - $\circ~$ Cardiac rhythm monitoring
 - \circ May consider rapid-acting therapies
 - \circ Dextrose 10% with rapid-acting insulin
 - IV Calcium gluconate

\circ Hypocalcemia

- $\circ~$ Do not correct if asymptomatic
- Treat symptomatic patients with lowest doses of calcium required to relieve symptoms

Source: Matuszkiewicz-Rowinska J, Malyszko J. Prevention and treatment of tumor lysis syndrome in the era of onco-nephrology progress. Kidney Blood Press Res. 2020;45(5):645-660.

May require renal replacement therapy (hemodialysis) in severe cases

PLAYING <mark>|</mark>|TO WIN

Take Home Points

- Tumor apoptosis, particularly in B-cell lymphomas, may cause changes in serum uric acid, K, Phos & Ca⁺⁺, which may lead to organ complications
- Management is multifactorial, but fluid hydration is a cornerstone of care & of utmost importance
- O Uric acid is often managed by allopurinol, but rasburicase may be considered in severe cases
- Correct electrolyte imbalances & use supportive care measures to mitigate complications

Source: Matuszkiewicz-Rowinska J, Malyszko J. Prevention and treatment of tumor lysis syndrome in the era of onco-nephrology progress. Kidney Blood Press Res. 2020;45(5):645-660.

PLAYING TO WIN

E Credit Deadline: 8/25/23

Introduction to Checkpoint Inhibitor Immunotherapy

- o T Cell function can be de-activated when a tumor cell's ligand binds to T cell's receptor
 - T Cell ligand = PD-L1 or CTLA-4
 - T Cell receptor = PD-1 or CD80/CD86
- Prevention of the ligand-receptor interaction with immunotherapy could prolong and reinvigorate the anti-tumor immune response

Source: "Immune Checkpoint Inhibitors and Their Side Effects." Immunotherapy, American Cancer Society, 22 Mar. 2022, https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/immune-checkpoint-inhibitors.html.

PLAYING

List of Checkpoint Inhibitors

Drug Name	Mechanistic Target	Year Approved
Ipilimumab	CTLA-4	2011
Pembrolizumab	PD-1	2014
Nivolumab	PD-1	2014
Cemiplimab	PD-1	2016
Atezolizumab	PD-L1	2016
Avelumab	PD-L1	2017
Durvalumab	PD-L1	2017
Dostarlimab	PD-1	2021
Relatlimab	LAG-3	2022

Source: Twomey JD, Zhang B. Cancer immunotherapy update: fda-approved checkpoint inhibitors and companion diagnostics. AAPS J. 2021;23(2):39. EMPERLI (dostarlimab-gxly) [package insert]. Philadelphia, PA: GlaxoSmithKline LLC.; 2023. OPDUALAG[™] (nivolumab and relatlimab-rmbw) [package insert]. Princeton, NJ: Bristol-Myers Squibb Company; 2022.

CE Credit Deadline: 8/25/23

Checkpoint Inhibitor Indications

- \circ Indications:
 - o Melanoma
 - Non-Small Cell Lung Cancer
 - $\circ~$ Head & Neck Cancer
 - \circ Hodgkin Lymphoma
 - Large B-Cell Lymphoma
 - \circ Urothelial Carcinoma
 - o MSI-H Cancer
 - o Gastric Cancer
 - $\circ~$ Cervical Cancer
 - o Hepatocellular Carcinoma
 - o Merkel Cell Carcinoma

- Esophageal Cancer
- Renal Cell Carcinoma
- o Endometrial Carcinoma
- TMB-H Cancer
- Cutaneous Squamous Cell Carcinoma
- o Breast Cancer
- o ...and potentially more!

Source: KEYTRUDA® (pembrolizumab) [package insert]. Whitehouse Station, NJ: Merck & Co., Inc.; 2023.

PLAYING <mark>||</mark>TO WIN

Mechanism of Immune-related Adverse Events

- 1. T-lymphocytes attack the tumor, resulting in tumor cell death & collateral damage to nearby healthy cells
- 2. Release of tumor antigens & self-antigens
- 3. APCs (antigen-presenting cells) ingest both these antigens & activate more T cells
- 4. T cells will now recognize & attack normal tissues

Source: "What Are Immunotherapy Side Effects - ESMO." Immunotherapy Side Effects, European Society of Medical Oncology, https://www.esmo.org/content/download/124130/2352601/1/ESMO-Patient-Guide-on-Immunotherapy-Side-Effects.pdf.

CE Credit Deadline: 8/25/23

Lungs: Dyspnea, Pneumonitis

Liver: Hepatitis

Endocrine: Pituitary gland or thyroid gland dysfunction GI (Colon): Diarrhea, Colitis Skin: Rash, Itching

Source: National Comprehensive Cancer Network. Management of Immunotherapy-Related Toxicities (Version 2.2023). https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. Accessed May 17, 2023.

Core Ideas

- Majority of irAEs occur within 3–6 months of therapy, but may manifest up to 1 year after discontinuation of treatment
- Early intervention with corticosteroids is the mainstay of treatment for most irAEs & crucial to limiting severity & duration
- Severe irAEs refractory to steroids after 48–72 hours; may use other agents particular to each disease.

Source: National Comprehensive Cancer Network. Management of Immunotherapy-Related Toxicities (Version 2.2023). https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. Accessed May 17, 2023.

Basic Management Strategy

Grade	Approach
Grade 1 (mild)	Manage symptomsContinue treatment
Grade 2 (moderate)	 May skip one or more treatment doses Manage symptoms Corticosteroids (initial dose of <u>0.5 to 1 mg/kg/d</u> of prednisone)
Grade 3 (severe)	 Hold immunotherapy High-dose corticosteroids (prednisone <u>1 to 2 mg/kg/d</u> or methylprednisolone 1 to 2 mg/kg/d)
Grade 4 (very severe)	 Permanent discontinuation of immunotherapy Consider inpatient admission

Source: National Comprehensive Cancer Network. Management of Immunotherapy-Related Toxicities (Version 2.2023). https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. Accessed May 17, 2023.

PLAYING

CE Credit Deadline: 8/25/2

Strategies for Refractory Syndrome

irAE	Secondary Agent
Colitis	InfliximabVedolizumab
Pneumonitis	InfliximabMycophenolate mofetilIVIG
Hepatitis	Mycophenolate mofetil

Source: National Comprehensive Cancer Network. Management of Immunotherapy-Related Toxicities (Version 2.2023). https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. Accessed May 17, 2023.

PLAYING TO WIN

CE Credit Deadline: 8/25/23

Take Home Points

- Checkpoint inhibitors enhance the immune system's attack patterns on cancer cells
- Byproduct of this process is that it may induce an autoimmune-like response toward the individual's healthy tissues (irAE)
- o irAEs may occur at any time, even months after treatment has completed
- Standard of care is high-dose corticosteroids that must be slowly tapered
- Secondary agents may be required for steroid-refractory cases

Cytokine Release Syndrome & Neurologic Toxicities (CAR-T Toxicities)

PLAYING

CE Credit Deadline: 8/25/23

Introduction to CAR-T (Chimeric Antigen Receptor)

- T-cells are collected from the patient
- An engineered viral vector inserts a gene to encode proteins on the T-cell surface
- These proteins, called CARs, act as receptors to target surface molecules of cancer cells
- CAR-T cells are then returned to the patient
- Binding to tumor cells activates cytokine release:
 - Induction of T cell multiplication & inflammatory factors at cancer cell site
 - Enhances response & persistence

Source: "Car T-Cell Therapy and Its Side Effects." Immunotherapy, American Cancer Society, 1 Mar. 2022, https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/car-t-cell1.html.

"Remodeled Car T-Cell Therapy Causes Fewer Side Effects." Cancer Currents Blog, National Cancer Institute, 20 Feb. 2020, https://www.cancer.gov/news-events/cancercurrents-blog/2020/car-t-cell-therapy-lymphoma-reduced-side-effects.

Portell, Craig. "How Does Car T-Cell Therapy Work in Treating Cancer?" Cancer.Net Blog, American Society of Clinical Oncology, 17 June 2021, https://www.cancer.net/blog/2021-06/how-does-car-t-cell-therapy-work-treating-cancer.

PLAYING <mark>||</mark>TO WIN

List of CAR-T Therapies

Drug Name	Disease Indication	Year Approved
Tisagenlecleucel	 Pediatric B-cell acute lymphocytic leukemia Large B-cell lymphoma Follicular lymphoma 	2017
Axicabtagene Ciloleucel	Large B-cell lymphomaFollicular lymphoma	2017
Brexucabtagene Autoleucel	B-cell acute lymphocytic leukemiaMantle cell lymphoma	2020
Lisocabtagene Maraleucel	Large B-cell lymphomaFollicular lymphoma	2021
Idecabtagene Vicleucel	Multiple myeloma	2021
Ciltacabtagene Autoleucel	Multiple myeloma	2022

Source: "CAR T Cells: Engineering Patients' Immune Cells to Treat Their Cancers." Cancer Treatment Research, National Cancer Institute, 10 Mar. 2022, https://www.cancer.gov/about-cancer/treatment/research/car-t-cells.

PLAYING

CAR-T Toxicity Warnings

- Cytokine Release Syndrome (CRS)
- Neurologic Toxicities (CRES)

Both complications are life-threatening & require registration into REMS program to use these agents

Source: National Comprehensive Cancer Network. Management of Immunotherapy-Related Toxicities (Version 2.2023). https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. Accessed May 17, 2023.

CE Credit Deadline: 8/25/23

Bi-specific T-cell engager ('BiTe')

- Bi-specific T-cell engager ('BiTe' for short)
 - Mechanism: Brings the body's native T-cells (by binding to the CD3 site of the T-cells) to the site of cancer cells, activates T-cell attack on cancer cells & pro-inflammatory cytokines release

Drug Name	Disease Indication	Target	Year Approved	Rate of CRS
Blinatumomab ²⁸	Acute lymphoblastic leukemia	CD19 – CD3	2014	14%
Tebentafusp ²⁹	Uveal melanoma	gp100 peptide-HLA – CD3	2022	89%
Teclistamab ³⁰	Multiple myeloma	BCMA – CD3	2022	72%
Mosunetuzumab ³¹	Follicular lymphoma	CD20 – CD3	2022	39%

Source: BLINCYTO (blinatumomab) [package insert]. Thousand Oaks, CA: Amgen Inc.; 2022. KIMMTRAK (tebentafusp-tebn) [package insert]. Conshohocken, PA: Immunocore Commercial LLC.; 2022. TECVAYLI (teclistamab-cqyv) [package insert]. Horsham, PA: Janssen Biotech, Inc.; 2022. LUNSUMIO (mosunetuzumab-axgb) [package insert]. San Francisco, CA. Genentech, Inc.; 2022.

PLAYING <mark>||</mark>TO WIN

- Toxicity associated with high levels of inflammatory cytokines (GM-CSF, IL-6, IL-1B, CRP), induced by activated myeloid CAR-T cells
- Overactivation of immune effector cells results in endothelial injury & capillary leak, hemodynamic instability & organ dysfunction
- \circ Symptoms:
 - Mild: Fevers, sinus tachycardia, nausea, fatigue, myalgias, malaise, headache
 - Severe: Hypotension, hypoxia, decline in cardiac function, organ dysfunction (liver & renal),
 Afib/Vtach, capillary leak
- Typically develops 2–3 days post-infusion or as late as 10–15 days post infusion
- $\circ~$ Peaks & resolves within 7 days

Source: National Comprehensive Cancer Network. Management of Immunotherapy-Related Toxicities (Version 2.2023). https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. Accessed May 17, 2023. Fischer JW, Bhattarai N. Car-t cell therapy: mechanism, management, and mitigation of inflammatory toxicities. Front Immunol. 2021;12:693016. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127(26):3321-3330. Yáñez L, Sánchez-Escamilla M, Perales MA. Car t cell toxicity: current management and future directions. Hemasphere. 2019;3(2):e186.

PLAYING <mark>|</mark>TO WIN

Neurotoxicities

- Toxicity associated with high levels of inflammatory cytokines as with CRS
- Symptoms:
 - \circ Mild: Tremors, somnolence
 - Severe: Delirium, hallucinations/psychosis, cognitive, dysphasia, nerve palsies, focal motor or sensory deficits, myoclonus, obtundation (may require mechanical ventilation), seizures
- \circ Develops 4–10 days post-infusion

Source: Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127(26):3321-3330

Monitoring Parameters

- Vital signs & cardiac rhythm
- Neurologic assessment
- Blood counts
- Electrolytes
- Coagulation assays
- Inflammatory markers (CRP, lactate, LDH, ferritin)

Source: National Comprehensive Cancer Network. Management of Immunotherapy-Related Toxicities (Version 2.2023). https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. Accessed May 17, 2023.

PLAYING TO WIN

CE Credit Deadline: 8/25/23

Tocilizumab

- Mechanism: IL-6-R inhibitor
- Tocilizumab 8 mg/kg IV over 1 hour (not to exceed 800 mg/dose)
- Repeat in 8 hours if no improvement
- Do not exceed 3 doses in 24 hours, with a maximum of 4 doses total
- 2 doses reserved per patient, mandated by REMS program

Source: National Comprehensive Cancer Network. Management of Immunotherapy-Related Toxicities (Version 2.2023). https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. Accessed May 17, 2023.

PLAYING TO WIN

CRS Treatment

Grade	Approach
Grade 1 • Fever (≥ 38 C)	 Consider tocilizumab (if prolonged > 3 days) In general, avoid steroids*
 Grade 2 (moderate) Fever (≥ 38 C) Hypotension (not requiring pressors) Hypoxia requiring low-flow cannula 	 Tocilizumab Consider Corticosteroids for refractory** hypotension: Dexamethasone 10 mg IV Q12–24hrs
	*For idecaptagene and lisecaptagene, consider devamethasene 10 mg IV every

For idecabtagene and lisocabtagene, consider dexamethasone 10 mg IV every 24 hours for early-onset CRS

** Refractory after 1–2 doses of anti-IL-6 therapy with Grade 2

Source: National Comprehensive Cancer Network. Management of Immunotherapy-Related Toxicities (Version 2.2023). https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. Accessed May 17, 2023.

PLAYING || TO WIN

CE Credit Deadline: 8/25/23

CRS Treatment

Grade	Approach	
 Grade 3 (severe) Fever (≥ 38 C) Hypotension (requiring pressor(s)) Hypoxia requiring high-flow cannula 	 Tocilizumab Corticosteroids: Dex 10 mg IV Q 6–12 hrs 	Definitive pressor use with Grade 3-4
 Grade 4 (very severe) Fever (≥ 38 C) Hypotension (requiring pressors) Hypoxia requiring mechanical ventilation 	 Tocilizumab Corticosteroids: Dex 10 mg IV Q 6hrs Methylprednisolone 1000 mg/day x 3 if refractory 	
	*For idecabtagene and lisocabtagene, consider	

*For idecabtagene and lisocabtagene, consider dexamethasone 10 mg IV every 24 hours for early-onset CRS ** Refractory after 1–2 doses of anti-IL-6 therapy

Source: National Comprehensive Cancer Network. Management of Immunotherapy-Related Toxicities (Version 2.2023). https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. Accessed May 17, 2023.

PLAYING TO WIN

CE Credit Deadline: 8/25/23

Neurotoxicity Evaluation

- ICANS (Immune Effector Cell-Associated Neurotoxicity Syndrome) Consensus Grading
 - $\circ~$ Level of consciousness
 - o Seizure
 - Motor findings
 - Elevated ICP/cerebral edema

 \circ ICE score

ICE (Immune Effector Cell-Associated Encephalopathy) Assessment Tool: Orientation Naming Writing Attention

Source: National Comprehensive Cancer Network. Management of Immunotherapy-Related Toxicities (Version 2.2023). https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. Accessed May 17, 2023.

PLAYING TO WIN

CE Credit Deadline: 8/25/23

Neurotoxicity Treatment

Grade	Approach		
Grade 1	Supportive care		
Grade 2 (moderate)	• Dexamethasone 10 mg IV, repeat Q 6–12 hrs PRN	Give tocilizumab only if	
Grade 3 (severe) <i>Requires ICU admission</i>	 Dexamethasone 10 mg IV, repeat Q 6–12 hrs PRN or Methylprednisolone 1 mg/kg IV Q12 hr 	concurrent CRS	
Grade 4 (very severe) Requires ICU admission	 High-dose corticosteroids Treat status epilepticus per institutional guidelines Mechanical ventilation may be required 		

Source: National Comprehensive Cancer Network. Management of Immunotherapy-Related Toxicities (Version 2.2023). https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. Accessed May 17, 2023.

PLAYING TO WIN

Take Home Points

- Newest technologies can "train" our T-cells to be highly specific toward killing targeted cancer cells
- Two key adverse events as a result of this technology are: CRS (cytokine release syndrome) & CAR-T-associated neurotoxicity
- For CRS, high-dose corticosteroids & tocilizumab are the key agents to mitigate an elevated cytokine response
- For CAR-T neurotoxicity, corticosteroids alone are the mainstay of therapy & use of tocilizumab is not recommended at this time

Source: Add source of your data here in size 11 font.

PLAYING TO WIN

References

- 1. Zimmer AJ, Freifeld AG. Optimal management of neutropenic fever in patients with cancer. J Oncol Pract. 2019;15(1):19-24.
- 2. Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011;52(4):e56-93.
- 3. National Comprehensive Cancer Network. Prevention and Treatment of Cancer-Related Infections(Version 3.2022). https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf Accessed May 17, 2023.
- 4. Kedzior SK. Overcoming Resistance: Antibiotic Guidance for Multidrug-Resistant Febrile Neutropenia in Patients with Cancer. Journal of Hematology Oncology Pharmacy . 2021;11(2):95-104.
- 5. Rego EM, De Santis GC. Differentiation syndrome in promyelocytic leukemia: clinical presentation, pathogenesis and treatment. Mediterr J Hematol Infect Dis. 2011;3(1):e2011048.
- 6. Gasparovic L, Weiler S, Higi L, Burden AM. Incidence of differentiation syndrome associated with treatment regimens in acute myeloid leukemia: a systematic review of the literature. J Clin Med. 2020;9(10):E3342.
- 7. Sanz MA, Montesinos P. How we prevent and treat differentiation syndrome in patients with acute promyelocytic leukemia. Blood. 2014;123(18):2777-2782.
- 8. Zhou GB, Zhang J, Wang ZY, Chen SJ, Chen Z. Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy. Philos Trans R Soc Lond B Biol Sci. 2007;362(1482):959-971.
- 9. XOSPATA[®] (gilteritinib) [package insert]. Northbrook, Illinois: Astellas Pharma Inc.; 2022.
- 10. IDHIFA[®] (enasidenib) [package insert]. Summit, NJ: Celgene Corporation; 2022.
- 11. TIBSOVO[®] (ivosidenib) [package insert]. Boston, MA: Servier Pharmaceuticals LLC.; 2022.
- 12. Howard SC, Jones DP, Pui CH. The tumor lysis syndrome. N Engl J Med. 2011;364(19):1844-1854.

PLAYING TO WIN

References, continued

- 13. Matuszkiewicz-Rowinska J, Malyszko J. Prevention and treatment of tumor lysis syndrome in the era of onco-nephrology progress. Kidney Blood Press Res. 2020;45(5):645-660.
- 14. "Immune Checkpoint Inhibitors and Their Side Effects." Immunotherapy, American Cancer Society, 22 Mar. 2022, https://www.cancer.org/treatment/treatments-and-side-effects. https://www.cancer.org/treatment/treatments-and-side-effects. https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/immune-checkpoint-inhibitors.html.
- 15. Twomey JD, Zhang B. Cancer immunotherapy update: fda-approved checkpoint inhibitors and companion diagnostics. AAPS J. 2021;23(2):39.
- 16. JEMPERLI (dostarlimab-gxly) [package insert]. Philadelphia, PA: GlaxoSmithKline LLC.; 2023.
- 17. OPDUALAG[™] (nivolumab and relatlimab-rmbw) [package insert]. Princeton, NJ: Bristol-Myers Squibb Company; 2022.
- 18. KEYTRUDA® (pembrolizumab) [package insert]. Whitehouse Station, NJ: Merck & Co., Inc.; 2023.
- 19. "What Are Immunotherapy Side Effects ESMO." Immunotherapy Side Effects, European Society of Medical Oncology, https://www.esmo.org/content/download/124130/2352601/1/ESMO-Patient-Guide-on-Immunotherapy-Side-Effects.pdf.
- National Comprehensive Cancer Network. Management of Immunotherapy-Related Toxicities (Version 2.2023). https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. Accessed May 17, 2023.
- 21. Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016;54:139-48.
- Haanen, J B A G, et al. "Management of Toxicities from Immunotherapy: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up." Annals of Oncology, vol. 29, no. Supplement_4, 2018, pp. iv264–iv266., doi:10.1093/annonc/mdy162.
- 23. Simmons D, Lang E. The Most Recent Oncologic Emergency: What Emergency Physicians Need to Know About the Potential Complications of Immune Checkpoint Inhibitors. Cureus.

2017;9(10):e1774.

PLAYING || TO WIN

References, continued

- 24. "Car T-Cell Therapy and Its Side Effects." Immunotherapy, American Cancer Society, 1 Mar. 2022, https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/car-t-cell1.html.
- 25. "Remodeled Car T-Cell Therapy Causes Fewer Side Effects." Cancer Currents Blog , National Cancer Institute, 20 Feb. 2020, https://www.cancer.gov/news-events/cancer-currentsblog/2020/car-t-cell-therapy-lymphoma-reduced-side-effects.
- 26. Portell, Craig. "How Does Car T-Cell Therapy Work in Treating Cancer?" Cancer.Net Blog, American Society of Clinical Oncology, 17 June 2021, https://www.cancer.net/blog/2021-06/how-does-car-t-cell-therapy-work-treating-cancer.
- 27. "CAR T Cells: Engineering Patients' Immune Cells to Treat Their Cancers." Cancer Treatment Research, National Cancer Institute, 10 Mar. 2022, https://www.cancer.gov/about-cancer/treatment/research/car-t-cells.
- 28. BLINCYTO (blinatumomab) [package insert]. Thousand Oaks, CA: Amgen Inc.; 2022.
- 29. KIMMTRAK (tebentafusp-tebn) [package insert]. Conshohocken, PA: Immunocore Commercial LLC.; 2022.
- 30. TECVAYLI (teclistamab-cqyv) [package insert]. Horsham, PA: Janssen Biotech, Inc.; 2022.
- 31. LUNSUMIO (mosunetuzumab-axgb) [package insert]. San Francisco, CA. Genentech, Inc.; 2022.
- 32. Fischer JW, Bhattarai N. Car-t cell therapy: mechanism, management, and mitigation of inflammatory toxicities. Front Immunol. 2021;12:693016.
- 33. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127(26):3321-3330
- 34. Yáñez L, Sánchez-Escamilla M, Perales MA. Car t cell toxicity: current management and future directions. Hemasphere. 2019;3(2):e186.

PLAYING TO WIN

Thank you...

Andrew Li liw@slhs.org

