Don't Go Breaking My Heart: Cardiovascular Effects of SGLT-2 Inhibitors & GLP-1 Receptor Agonists

A Presentation for HealthTrust Members December 15, 2021

SONA GOSWAMI, PHARMD PGY-1 PHARMACY RESIDENT ROBERT WOOD JOHNSON UNIVERSITY HOSPITAL

> PRECEPTOR: MARY BRIDGEMAN, PHARMD, BCPS, BCGP CLINICAL PROFESSOR ERNEST MARIO SCHOOL OF PHARMACY, RUTGERS UNIVERSITY

Conflicts of Interest Disclosure

There are no relevant financial interest to disclose for myself or my spouse/partner within the last 12 months.

The preceptor has a financial interest/arrangement, affiliation or relationship with AstraZeneca that could be perceived as a real or apparent conflict of interest in the context of the subject of this activity.

Note: This program may contain the mention of suppliers, brand products, services, or drugs presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes only and should not be perceived as an endorsement of any particular supplier, brand, product, service or drug.

Learning Objectives

Recall current guideline-directed medical therapy, common cardiovascular risk factors, and challenges faced in the treatment of patients with diabetes

Identify cardiac effect and clinical outcomes of agents within the SGLT-2 inhibitor and GLP-1 receptor agonist drug classes when used in the treatment of diabetes

Define the role of the pharmacist in promoting positive cardiovascular outcome in patients with diabetes

Abbreviations

SGLT-2: sodium-glucose cotransporter-2

GLP-1: glucagon-like peptide 1

ASCVD: atherosclerotic cardiovascular disease

CV: cardiovascular

CKD: chronic kidney disease

eGFR: estimated glomerular filtration rate

SQ: subcutaneous

PO: by mouth

HF: heart failure

GI: gastrointestinal

ADA: American Diabetes Association

T2DM: type 2 diabetes mellitus

MI: myocardial infarction

HbA1C: glycated hemoglobin

CrCl: creatinine clearance

MACE: major adverse cardiovascular events

HR: Hazard Ratio

CI: Confidence Interval

EPO: Erythropoietin

BMI: body mass index

What is Diabetes?

Group of metabolic disorders causing elevated blood glucose levels and abnormal fat and protein metabolism

Source: Trujillo J, et al. Diabetes Mellitus. In: DiPiro JT, et al. Pharmacotherapy: A Pathophysiologic Approach, 11e. McGraw-Hill.

DIABETES MELLITUS

Source: https://medlineplus.gov/genetics/condition/type-2-diabetes/

What is ASCVD?

Source: https://www.cdc.gov/heartdisease/coronary_ad.htm

Source: Atherosclerotic Cardiovascular Disease (ASCVD) Primary Prevention Guideline, Kaiser Permanente. Available from: https://wa.kaiserpermanente.org/static/pdf/public/guidelines/ascvd-primary.pdf. Updated October 2020. Accessed November 29, 2021.

ASCVD Risk Factors

Sources:

American Diabetes Association. Diabetes Care. 2021 Jan;44 Suppl 1(Suppl 1).

Project risk reduction by therapy. ASCVD Risk Estimator +. https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/. Accessed November 29, 2021.

ASCVD Risk in Diabetes

•More than 70% of patients with type 2 diabetes die of cardiovascular causes

- •Manifestations of coronary heart disease are at least twofold more common in patients with type 2 diabetes than in nondiabetic individuals
- •Mechanisms linking type 2 diabetes with cardiovascular disease remain poorly understood
 - Development of hyperglycemia leads to several potential mechanisms for high glucose to increase risk of atherothrombosis
 - Earliest finding in the pathogenesis of atherosclerotic lesions is impaired endothelial function, which is tightly linked to insulin resistance
- •December 2008: FDA mandated long-term cardiovascular outcomes trials for safety for approval of anti-diabetes drugs for type 2 diabetes

Sources: Laakso M. *Diabetes Care*. 2010;33(2):442-449. Cefalu WT, et al. *Diabetes Care*. 2018;41(1):14-31.

Source: Cefalu WT, et al. *Diabetes Care*. 2018;41(1):14-31.

ADA Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes – 2021

countries TZDs are relatively more expensive and DPP-4i are

relatively cheaper.

 Empagilflozin, canagilflozin, and dapagilflozin have shown reduction in HF and to reduce CKD progression in CVOTs. Canagilflozin and dapagilflozin have primary neal outcome data. Dapagilflozin and empagilflozin have primary heart failure outcome data. glucose-lowering medications. • Most patients enrolled in the relevant trials were on metformin at baseline as

glucose-lowering therapy.

Liraglutide (Victoza®)

Semaglutide (Ozempic[®]/ Rybelsus[®])

Dulaglutide (Trulicity[®])

+ASCVD/Indicators of High Risk

- Established ASCVD
- Indicators of high ASCVD risk (age ≥55 years with coronary, carotid, or lower-extremity artery stenosis >50%, or LVH)

Empagliflozin (Jardiance[®])

Canagliflozin (Invokana[®])

Source: American Diabetes Association. *Diabetes Care*. 2021 Jan;44 Suppl 1(Suppl 1).

Question 1

Which of the following is <u>NOT</u> an ASCVD risk factor?

A. Smoking

- B. Diabetes mellitus
- C. Pregnancy
- D. Age

Question 1: Response

Which of the following is <u>NOT</u> an ASCVD risk factor?

A. Smoking

B. Diabetes mellitus

C. Pregnancy

D. Age

GLP-1 Receptor Agonists

Generic (Brand)

 Liraglutide (Victoza[®])

Semaglutide (Ozempic[®] / Rybelsus[®])

 Dulaglutide (Trulicity[®])

Mechanism of Action

- Increases glucosedependent insulin secretion
- Reduces gastric emptying
- Increases satiety

Proposed Mechanism of CV Risk Reduction

- Exact mechanism is unclear
- Proposed theories:
 - Reduction in blood pressure
 - Weight loss
 - Anti-oxidative and anti-inflammatory effects

Sources:

Lexi-Drugs. Hudson, OH: Lexicomp, 2021. http://online.lexi.com/. Cox, Emily, et al. US Endocrinology. 16. 80. 10.17925/USE.2020.16.2.80.

LEADER

Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes				
Study Population	Interventions	Clinical Endpoints	Outcomes	
 T2DM with HbA1C% ≥ 7% Age ≥ 50 years with at least one CV condition Age ≥ 60 years with at least one CV risk factor N = 9340 	 1.8 mg liraglutide SQ injection once daily Placebo SQ injection once daily 	 Primary composite outcome Death from CV causes Nonfatal MI Nonfatal stroke Additional exploratory outcomes Coronary revascularization Hospitalization for unstable angina pectoris or HF 	 Primary outcome Liraglutide: 13% Placebo: 14.9% HR 0.87; 95% Cl, 0.78 to 0.97, p<0.001 for noninferiority, p=0.01 for superiority No significant difference seen in rates of nonfatal MI, nonfatal stroke, or hospitalization for HF 	
SP et al N Engl Med 2016.375(4)	·311-322			

Source: Marso SP, et al. N Engl J Med. 2016;375(4):

SUSTAIN-6

Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes					
Study Population	Interventions	Clinical Endpoints	Outcomes		
 T2DM with HbA1C% ≥ 7% Age ≥ 50 years with established ASCVD Age ≥ 60 years with at least one CV risk factor CKD stage 3 or higher N = 3297 	 0.5 mg semaglutide SQ injection once weekly 1 mg semaglutide SQ injection once weekly Volume-matched placebo (n = 1649) Fixed-dose escalation procedure: 0.25 mg for 4 weeks Escalated to 0.5 mg for 4 weeks until maintenance dose reached 	 Primary composite outcome Death from CV causes Nonfatal MI Nonfatal stroke 	 Primary outcome Semaglutide: 6.6% Placebo: 8.9% HR 0.74; 95% Cl, 0.58 to 0.95; p<0.001 for noninferiority Rates of death from CV causes were similar Many patients discontinued treatment due to GI effects 		

Source: Marso SP, et al. *N Engl J Med*. 2016;375(19):1834-1844.

PIONEER 6

Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes				
Study Population	Interventions	Clinical Endpoints	Outcomes	
 Patients with T2DM Age ≥ 50 years with established ASCVD or CKD Age ≥ 60 years with CV risk factors N = 3183 	 Target dose 14 mg oral semaglutide once daily Placebo Dose-escalation schedule used to minimize GI effects 	 Primary outcomes Time to first occurrence of MACE Death from CV causes, nonfatal MI, nonfatal stroke 	 MACE Semaglutide: 3.8% Placebo: 4.8% HR 0.79; 95% Cl, 0.57 to 1.11; p<0.001 for noninferiority Discontinuation of treatment due to Gl effects commonly seen in semaglutide group 	

REWIND

	Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial					
	Study Population	Interventions	Clinical Endpoints	Outcomes		
•	Patients ≥ 50 years with T2DM with HbA1C% ≤ 9.5%, established ASCVD or CV risk factors N = 9901	 1.5 mg dulaglutide SQ injection once weekly Placebo SQ injection once weekly 	 Primary endpoint Death from CV or unknown causes Nonfatal MI Nonfatal stroke 	 Primary composite outcome Dulaglutide: 12% Placebo: 13.4% HR 0.88, 95% Cl, 0.79 to 0.99; p=0.026 All-cause mortality did not differ between groups 		

Treatment with GLP-1 Receptor Agonists

Drug	Usual Adult Dose	Renal Dose Adjustment?	Adverse Effects	Monitoring
Liraglutide (Victoza®)	0.6 mg once daily, then increase to 1.2 mg daily, then may increase up to 1.8 mg daily	No	 Black Box Warning: 	 Blood glucose
Semaglutide (Ozempic®)	0.25 mg once weekly for 4 weeks, then increase to 0.5 mg weekly, then may increase up to 1 mg weekly	No	thyroid C-cell tumorsGl symptoms	Renal functionTriglycerides
Semaglutide (Rybelsus®)	3 mg once daily for 30 days, then increase to 7 mg daily, then may increase up to 14 mg daily	No	PancreatitisInjection-site nodule	
Dulaglutide (Trulicity®)	0.75 mg once weekly, may increase to 1.5 mg weekly after 4-8 weeks, may increase to 3 mg weekly, then max of 4.5 mg weekly	No		So

Cox, Emily, et al. US Endocrinology. 16. 80. 10.17925/USE.2020.16.2.80.

Vuylsteke VA, et al. Diabetes Mellitus. ACCP/ASHP 2020 Ambulatory Care Pharmacy Preparatory Review and Recertification Course. Updated 2020. Accessed November 29, 2021.

GLP-1 Receptor Agonist Summary

Drug	Liraglutide (Victoza®)	Semaglutide (Ozempic [®])	Semaglutide (Rybelsus®)	Dulaglutide (Trulicity [®])
		Patients with T2DM		
FDA Approval for CV Risk Reduction?	Yes	Yes	No	Yes
Indication	↓ risk of MACE in patients with established ASCVD	↓ risk of MACE in patients with established ASCVD	Noninferior to placebo for MACE	↓ risk of MACE in patients with established ASCVD or multiple risk factors
Supporting Evidence	LEADER	SUSTAIN-6	PIONEER 6	REWIND

Source: Cox, Emily, et al. US Endocrinology. 16. 80. 10.17925/USE.2020.16.2.80.

SGLT-2 Inhibitors

Generic (Brand)

- Empagliflozin (Jardiance[®])
- Dapagliflozin (Farxiga[®])
- Canagliflozin (Invokana[®])
- Ertugliflozin (Steglatro[®])

Sources:

Lexi-Drugs. Hudson, OH: Lexicomp, 2021. http://online.lexi.com/. Lopaschuk GD, et al. *JACC Basic Transl Sci*. 2020;5(6):632-644.

Mechanism of Action

- Inhibits SGLT-2 in proximal renal tubules
- Decreases glucose reabsorption

Proposed Mechanism of CV Risk Reduction

- Exact mechanism is unclear
- Proposed theories:
 - Increased diuresis
 - Weight loss
 - Enhanced EPO secretion
 - Improved vascular function

EMPA-REG OUTCOME

Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes				
Study Population	Interventions	Clinical Endpoints	Outcomes	
 Adults with T2DM BMI ≤ 45 kg/m² eGFR ≥ 30 mL/min/1.73 m² Established ASCVD N = 7020 	 10 mg empagliflozin 25 mg empagliflozin Placebo (n = 2333) 	 Primary composite outcome Death from CV causes Nonfatal MI Nonfatal stroke Secondary composite outcome Primary outcomes Hospitalization for unstable angina 	 Primary outcome Empagliflozin: 10.5% Placebo: 12.1% HR 0.86; 95.02% Cl, 0.74 to 0.99; p=0.04 Secondary outcome No significant difference (p=0.08) 	

Source: Zinman B, et al. N Engl J Med. 2015;373(22):2117-2128.

DECLARE-TIMI 58

Da	Diabetes		
Study Population	Interventions	Clinical Endpoints	Outcomes
 Patients ≥ 40 years with T2DM HbA1C% ≥ 6.5%, but < 12.0% CrCl ≥ 60 mL/min Multiple ASCVD risk factors N = 17,160 	 10 mg dapagliflozin Placebo 	 Primary safety outcome MACE Primary efficacy outcome MACE MACE CV death or hospitalization for HF Secondary efficacy outcomes Renal composite outcome Death from any cause 	 Primary safety outcome Dapagliflozin was non-inferior to placebo p<0.001 Primary efficacy outcomes Dapagliflozin: 8.8% Placebo: 9.4% HR 0.93; 95% Cl, 0.84 to 1.03; p=0.17

Source: Wiviott SD, et al. N Engl J Med. 2019;380(4):347-357.

Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes					
Study Population	Interventions	Clinical Endpoints	Outcomes		
 T2DM and either: ≥ 30 years with history of symptomatic ASCVD ≥ 50 years with 2 or more ASCVD risk factors eGFR ≥ 30 mL/min/1.73 m² N = 10.142 	 100 mg canagliflozin 300 mg canagliflozin Placebo 	 Primary composite outcome Death from CV causes Nonfatal MI Nonfatal stroke 	 Primary outcome Canagliflozin: 26.9 participants per 1000 patient-years Placebo: 31.5 participants per 1000 patient-years HR 0.86; 95% Cl, 0.67 to 0.79; p<0.001 		

Source: Neal B, et al. N Engl J Med. 2017;377(7):644-657.

Treatment with SGLT-2 Inhibitors

Drug	Usual Adult Dose	Renal Dose Adjustment?	Adverse Effects	Monitoring	
Empagliflozin (Jardiance®)	10 mg PO once daily, may increase up to 25 mg once daily	Yes	 Hyperkalemia Genital mycotic infections Increased urination 	HyperkalemiaGenitalRenal fun	Blood glucoseRenal function
Dapagliflozin (Farxiga®)	5 mg PO once daily, may increase up to 10 mg once daily	Yes		Volume statusInfections	
Canagliflozin (Invokana®)	100 mg PO once daily before first meal of day, may increase up to 300 mg once daily	Yes		urination	
Ertugliflozin (Steglatro®)	5 mg once daily, may increase up to 15 mg once daily	Yes			

Source: Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors Comparison Chart, The Medical Letter. Available from: https://secure.medicalletter.org/downloads/1611f_table.pdf. Updated May 2021. Accessed November 29, 2021.

SGLT-2 Inhibitors Summary

Drug	Empagliflozin (Jardiance [®])	Dapagliflozin (Farxiga [®])	Canagliflozin (Invokana®)
	Patier	nts with T2DM	
FDA Approval for CV Risk Reduction?	Yes	Yes	Yes
Indication	↓ risk of CV death in patients with established ASCVD	↓ risk of hospitalization for HF in patients with established ASCVD or multiple risk factors	↓ risk of MACE in patients with established ASCVD
Supporting Evidence	EMPA-REG OUTCOME	DECLARE-TIMI 58	CANVAS

Source: Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors Comparison Chart, The Medical Letter. Available from: https://secure.medicalletter.org/downloads/1611f_table.pdf. Updated May 2021. Accessed November 29, 2021.

Question 2

Which of the following represents a clinical endpoint for the EMPA-REG Outcome trial?

A. Change in A1C%

B. Nonfatal myocardial infarction

C. eGFR

D. Diabetic ketoacidosis

Question 2: Response

Which of the following represents a clinical endpoint for the EMPA-REG Outcome trial?

A. Change in A1C%

B. Nonfatal myocardial infarction

C. eGFR

D. Diabetic ketoacidosis

Pharmacist's Role

Pharmacist's Role

Source: Cox, Emily, et al. US Endocrinology. 16. 80. 10.17925/USE.2020.16.2.80.

Resources for Additional Information

ADA Standards of Medical Care in Diabetes-2022

Diabetesed.net

Medical Letter

Diatribe.org

Question 3

Which of the following represents a role a pharmacist may play in optimizing diabetes management in patients with ASCVD risk? **Select all that apply.**

A. Monitoring for adverse effects

B. Suggesting an SGLT-2 inhibitor or GLP-1 receptor agonist with CV risk reduction

C. Allowing a patient to be lost to follow-up

D. Counseling patients on proper administration techniques

Question 3: Response

Which of the following represents a role a pharmacist may play in optimizing diabetes management in patients with ASCVD risk? Select all that apply.

A. Monitoring for adverse effects

B. Suggesting an SGLT-2 inhibitor or GLP-1 receptor agonist with CV risk reduction

C. Allowing a patient to be lost to follow-up

D. Counseling patients on proper administration techniques

Conclusions

References

Trujillo J, Haines S. Diabetes Mellitus. In: DiPiro JT, Yee GC, Posey L, Haines ST, Nolin TD, Ellingrod V. eds. Pharmacotherapy: A Pathophysiologic Approach, 11e. McGraw-Hill.

Atherosclerotic Cardiovascular Disease (ASCVD) Primary Prevention Guideline, Kaiser Permanente. Available from: https://wa.kaiserpermanente.org/static/pdf/public/guidelines/ascvd-primary.pdf. Updated October 2020. Accessed November 29, 2021.

American Diabetes Association. 10. Cardiovascular Disease and Risk Management: *Standards of Medical Care in Diabetes-2021* [published correction appears in Diabetes Care. 2021 Sep;44(9):2183-2185]. *Diabetes Care*. 2021;44(Suppl 1):S125-S150. doi:10.2337/dc21-S010

American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: *Standards of Medical Care in Diabetes-2021*. *Diabetes Care*. 2021;44(Suppl 1):S111-S124. doi:10.2337/dc21-S009

Project risk reduction by therapy. ASCVD Risk Estimator +. https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/. Accessed November 29, 2021.

Laakso M. Cardiovascular disease in type 2 diabetes from population to man to mechanisms: the Kelly West Award Lecture 2008. *Diabetes Care*. 2010;33(2):442-449. doi:10.2337/dc09-0749

Cefalu WT, Kaul S, Gerstein HC, et al. Cardiovascular Outcomes Trials in Type 2 Diabetes: Where Do We Go From Here? Reflections From a *Diabetes Care* Editors' Expert Forum. *Diabetes Care*. 2018;41(1):14-31. doi:10.2337/dci17-0057

Lexi-Drugs. Hudson, OH: Lexicomp, 2021. http://online.lexi.com/.

Vuylsteke VA, et al. Diabetes Mellitus. ACCP/ASHP 2020 Ambulatory Care Pharmacy Preparatory Review and Recertification Course. Updated 2020. Accessed November 29, 2021.

Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311-322. doi:10.1056/NEJMoa1603827

Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. *N Engl J Med*. 2016;375(19):1834-1844. doi:10.1056/NEJMoa1607141

Husain M, Birkenfeld AL, Donsmark M, et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. *N Engl J Med*. 2019;381(9):841-851. doi:10.1056/NEJMoa1901118

Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. *Lancet*. 2019;394(10193):121-130. doi:10.1016/S0140-6736(19)31149-3

Cox, Emily & Alicic, Radica & Neumiller, Joshua & Tuttle, Katherine. (2020). Clinical Evidence and Proposed Mechanisms for Cardiovascular and Kidney Benefits from Glucagonlike Peptide-1 Receptor Agonists. US Endocrinology. 16. 80. 10.17925/USE.2020.16.2.80.

Lopaschuk GD, Verma S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. *JACC Basic Transl Sci.* 2020;5(6):632-644. Published 2020 Jun 22. doi:10.1016/j.jacbts.2020.02.004

Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. *N Engl J Med*. 2015;373(22):2117-2128. doi:10.1056/NEJMoa1504720

Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(7):644-657. doi:10.1056/NEJMoa1611925

Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380(4):347-357. doi:10.1056/NEJMoa1812389

Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors Comparison Chart, The Medical Letter. Available from: https://secure.medicalletter.org/downloads/1611f_table.pdf. Updated May 2021. Accessed November 29, 2021.

Thank You!

SONA GOSWAMI, PHARMD PGY-1 PHARMACY RESIDENT EMAIL: SONA.GOSWAMI@RWJBH.ORG