

Lean, Mean, Efficiency Machine: Emergency Medicine Pearls

Brian Gilbert, PharmD, BCPS, BCCCP Emergency Medicine Clinical Pharmacy Specialist Residency Program Director, Critical Care Pharmacy Kansas Council of Health-System Pharmacy President-Elect Wesley Medical Center: Wichita KS <u>Brian.gilbert@wesleymc.com</u> @GilbertPharmD

Disclosures & Potential Conflicts of Interest

- I have no relevant financial conflicts of interest or disclosures related to this presentation
- This presentation will discuss off-label uses for medications

Learning Objectives

At the end of this session, participants should be able to:

- Identify strategies to promote efficiencies in emergency care and supporting clinical evidence
- List barriers that would prevent implementation of more efficient practices in emergency care
- Describe treatment regimens associated with the practices in emergency care discussed

Surviving Sepsis Campaign

Factor Xa Inhibitor Related ICH & PCCs

Antibiotics

Surviving Sepsis Campaign 1-Hour Bundle

SEP-1 Bundle

Measure lactate level

Obtain blood cultures before administering antibiotics

Administer broad-spectrum antibiotics

Begin to rapidly administer 30 mL/kg crystalloid for hypotension or lactate ≥ 4 mmol/L

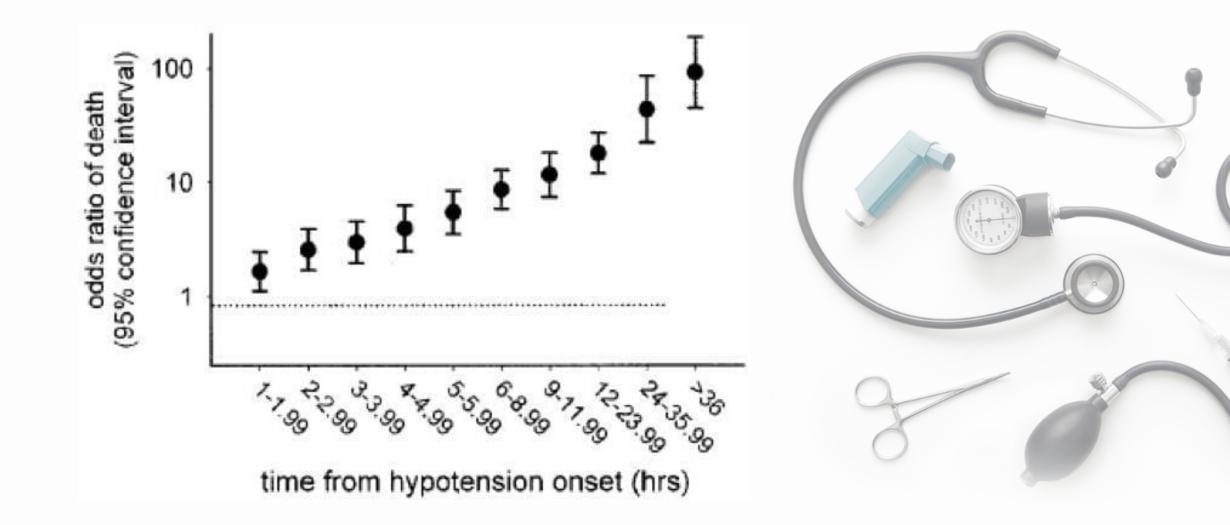
Sepsis Bundle Project (SEP). Specifications Manual for National Hospital Inpatient Quality Measures, 2017.

Surviving Sepsis Campaign 1-Hour Bundle

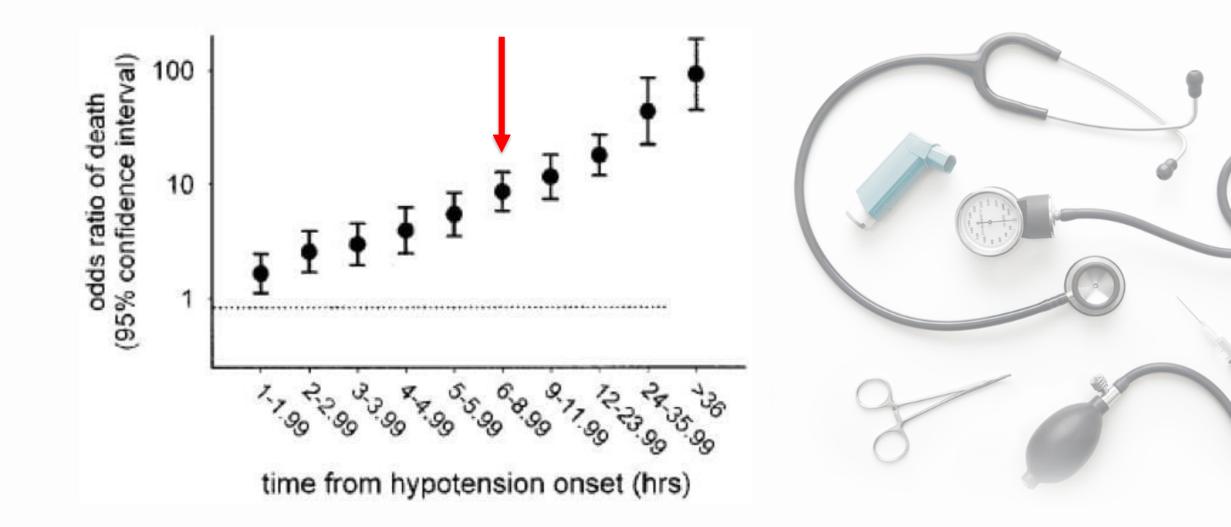
SEP-1 Bundle

Measure lactate level

Obtain blood cultures before administering antibiotics


Administer broad-spectrum antibiotics

Begin to rapidly administer 30 mL/kg crystalloid for hypotension or lactate ≥ 4 mmol/L

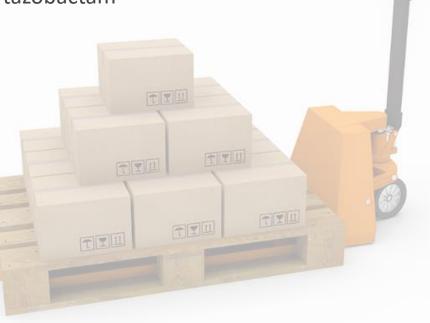

Sepsis Bundle Project (SEP). Specifications Manual for National Hospital Inpatient Quality Measures, 2017.

Delays in Antibiotic Administration

Delays in Antibiotic Administration

Considerations for Push Dose IV Antibiotics

Cephalosporins


- Cefazolin, cefotaxime, cefotetan, cefoxitin, ceftazidime all FDA approved for IV push
- Similar rates of phlebitis and similar infusion related complications
- Ceftriaxone and cefepime NOT FDA approved however relatively common
- The most studied class on push dose administration and likely the safest
- Dilution with 10 cc of normal saline is common

Push Dose Piperacillin/Tazobactam (Off-Label)

- Hays, et al.
- Dilution of 3.375 g and 4.5 g with 10 cc and 20 cc respectively
- A total of 300 patients were evaluated for the safety of push dose piperacillin/tazobactam
 - A total of 299/300 patients reported no adverse event (99.7%)
 - Dilution results in a concentration of ~ 1,000 mOsm/L
 - 8.4% sodium bicarbonate ~ 2,000 mOsm/L
 - D50 (25 g) dextrose ~ 2525 mOsm/L
 - 3% hypertonic saline ~ 900 mOsm/L

Push Dose Antibiotics for Those With Allergies to Penicillin or Cephalosporins

Carbapenems

- Meropenem FDA approved
- Ertapenem is not approved but is commonly administered via IV push
- Imipenem push dose should be avoided due to severe nausea
- No data avaiable currently to suggest doripenem IV push is safe

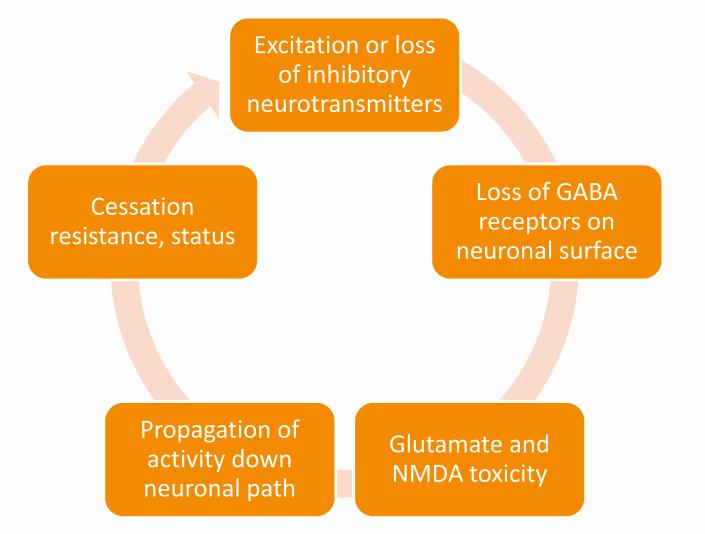
Monobactam

• Aztreonam is indicated for IV push after reconstitution

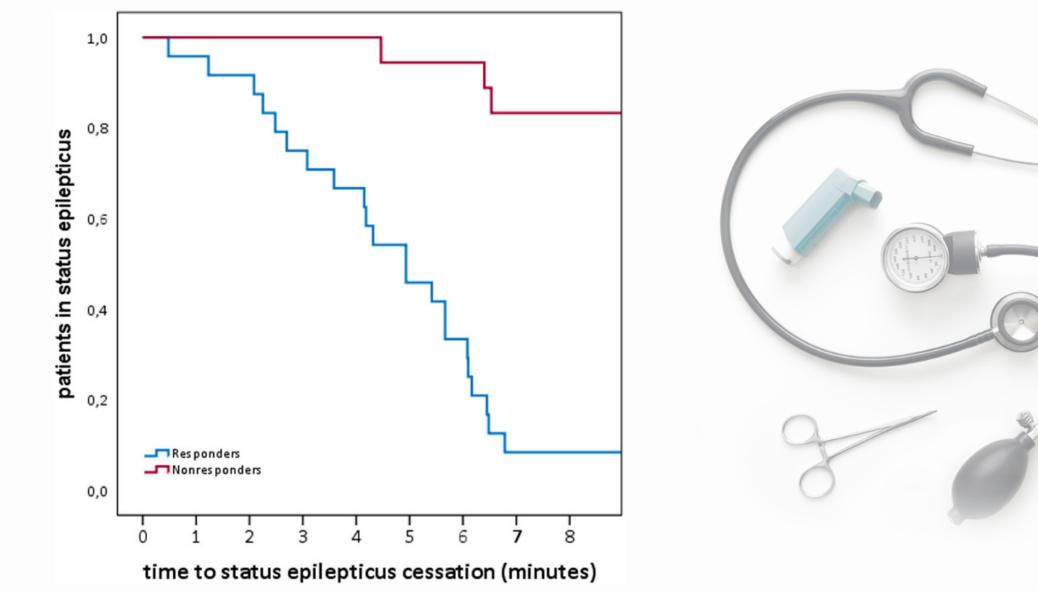
Wesley Medical Center Current Push Dose Antibiotic Practice

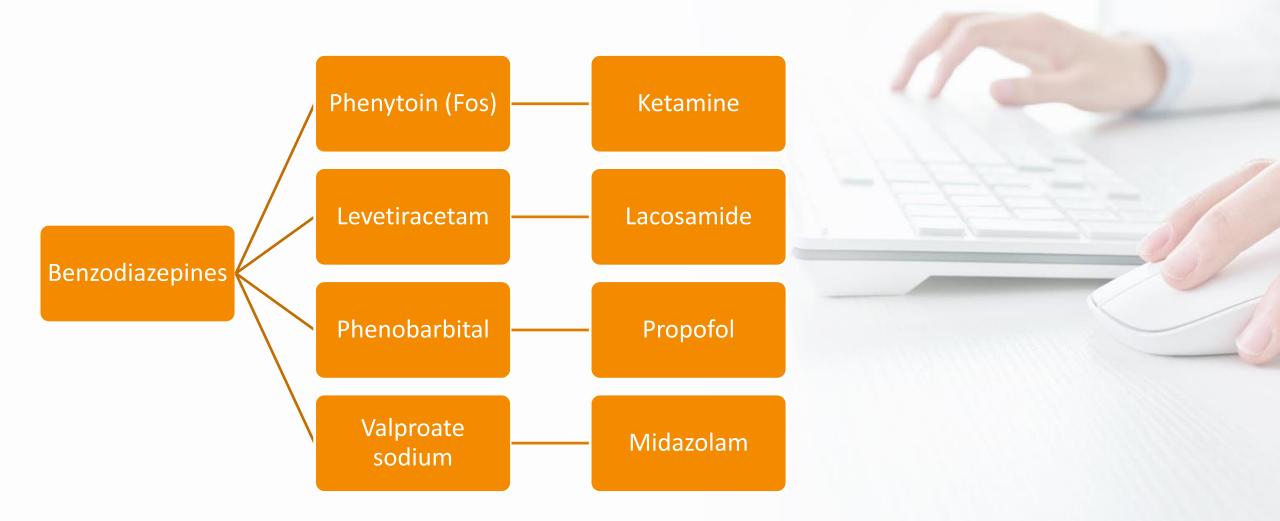
Common Push Dose Antibiotics By Class in the Emergency Department (ED) at Wesley Medical Center

- Penicillins and Cephalosporins
 - Piperacillin/Tazobactam (extended infusion after first dose in ED)
 - Cefazolin
 - Ceftriaxone
 - Cefepime
- Carbapenems
 - Meropenem
- Monobactam
 - Aztreonam
- Lipopetides
 - Daptomycin

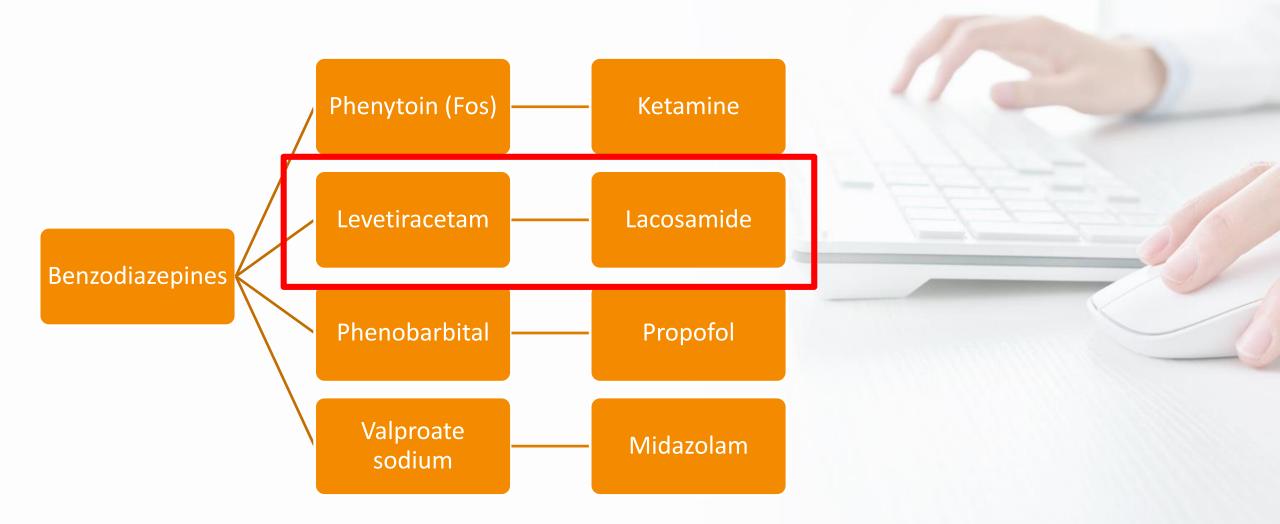

- Push dose antibiotics seems to allow for faster administration post verification
- Transitioning to push dose antibiotics can improve metrics associated with sepsis management
- Push dose vs. infusion doses appear equally safe

Antiepileptics


When STAT Actually Means STAT!


Sánchez. Seizure. 2019 May;68:16-21.

Time is Actually Brain Here


Select Neurocritical Care Society (NCS) Guideline Recommendations

Brophy. Neurocrit Care. 2012 Aug; 17(1): 3-23.

Select Neurocritical Care Society (NCS) Guideline Recommendations

Brophy. Neurocrit Care. 2012 Aug; 17(1): 3-23.

Push Dose Levetiracetam (Off-Label)

Morgan and Medenwald. *Neurocrit Care*. 2020 Feb; 32(1): 131 – 134.

- Retrospective study evaluating adverse drug reactions associated with undiluted levetiracetam
- January 1, 2018 June 1, 2018, at least one dose of undiluted levetiracetam, > 18 years old
- Safety endpoints were reviewed and collected from time of administration until hospital discharge
- There was a total of 199 patients included which resulted in 1626 doses
 - 60.8% received 1,000 mg
 - 64.3% received through a peripheral line
 - 8.1 doses per patient for mean total of 5 days
 - 98.5% did not experience an adverse event
 - 1.5% experienced agitation, delirium, confusion, lethargy (known adverse effects of levetiracetam)

Push Dose Lacosamide (Off-Label)

Davidson. *Neurocrit Care*. 2018 Dec; 29(3): 491 – 495.

- Retrospective study evaluating IV piggyback vs. IV push lacosamide (80 mg/min up to 400 mg)
- June 2016 to July 2017, patients <a>>18 years old who received a dose of lacosamide
- Outcomes measured included incidence of hypotension, bradycardia, as well as efficiency between order verification and administration
- 88 patients in IV piggyback vs. 78 in IV push
 - NS hypotension, NS bradycardia
 - Median time to order verification and administration was 35 minutes for IV push vs. 109 minutes for IV piggyback (p<0.001)

McLaughlin. Ann Pharmacother. 2021 Feb; 55(2): 181 - 186

- Retrospective study evaluating IV piggyback vs. IV push lacosamide (80 mg/min up to 400 mg)
- Pre-Post cohort analysis with safety endpoints including hypotension, bradycardia, IV site reactions, and medication related sedation
- NS difference in bradycardia, NS difference in hypotension, NS difference in medication related sedation, and NS difference in IV site reactions

Wesley Medical Center Current AED Practice

Current AED Practice at Wesley Medical Center

- Levetiracetam (LEV)
 - Undiluted in adults
 - Diluted 1:1 in pediatrics
 - 500 mg/minute rate
 - Up to 1,500 mg per order
- Lacosamide (LCM)
 - Undiluted in adults
 - Not utilized as push in pediatrics
 - 80 mg/minute rate
 - Up to 400 mg per order
- Fosphenytoin
 - Diluted to 25 mg/mL in both pediatrics and adults
 - Doses ≤ 750 mg are utilized as an IV push (5 minutes)

Comparator	Levetir	acetam (n=200)	Lacosamide (n=72)			
Groups	Infusion (n=100)	Push (n=100)	P value	Infusion (n=22)	Push (n=50)	P value
Median weight (kg [range])	76 [41-163]	81 [28-142]	0.54	67 [42-115]	80 [41-214]	0.13
Mean LEV weight-based loading dose (mg/kg)	15	16	0.07	Х	Х	x
Loading dose (%)						
≤ 150/1000 (LCM/LEV)	72 (72)	49 (49)	< 0.001	2 (9)	7 (14)	0.56
> 150/1000 (LCM/LEV)	28 (28)	51 (51)	< 0.001	20 (91)	43 (86)	0.56
Median total number of doses (range)	5 [2-22]	4 [2-37]	0.44	2 [1-14]	4 [2-35]	0.36
Line access (%)						
Central	6 (6)	12 (12)	0.13	3 (14)	4 (8)	0.48
Peripheral	73 (73)	67 (67)	0.13	17 (77)	40 (80)	0.48
Both	21 (21)	21 (21)	x	2 (9)	6 (12)	×

Time (min) from OE to A	Levetiracetam (n=200)			Lacosamide (n=72)			
	Infusion (n=100)	Push (n=100)	P value	Infusion (n=22)	Push (n=50)	P value	
Median [Range]	52 [1-312]	27 [0-200]	< 0.001	89 [35-229]	32 [2-213]	<0.001	

OE, order entry; A, administration

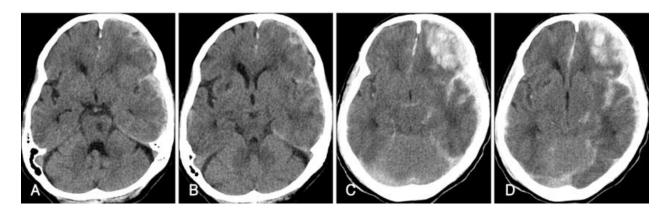
	Leve	etiracetam (n=1	47)	Lacosamide (n=61)			
Outcomes	Infusion (n=90)	Push (n=57)	P value	Infusion (n=22)	Push (n=39)	P value	
Median time from OE to V [Range]	5 [0-232]	3 [0-117]	0.99	9 [0-23]	6 [0-25]	0.33	
Median time from V to A [Range]	41 [0-244]	26 [1-152]	0.04	84 [30-225]	28 [3-207]	0.002	

Outcomes	Levetiracetam (n=200)			Lacosamide (n=72)		
	Infusion (n=100)	Push (n=100)	P value	Infusion (n=22)	Push (n=50)	P value
Median percentage of overdue doses [Range]	13 [0-100]	0 [0-67]	0.69	32 [0-100]	0 [0-50]	< 0.001
Rate of initial doses overdue (%)	43 (43)	19 (19)	0.001	18 (82)	39 (78)	0.03

OE, order entry; A, administration

V, verification

- Push dose AEDs seems to allow for faster administration post verification
- Transitioning to push dose AED may allow for less operational burden
- Push dose vs. infusion doses appear equally safe



Prothrombin Complex Concentrate

Factor Xa (FXa) Inhibitor & Warfarin Associated Bleeds

- FXa inhibitor and warfarin associated bleeds, especially intracranial hemorrhages (ICH), are life threatening
- Four-factor prothrombin complex concentrate (PCC) seems to be beneficial in obtaining hemostasis
- Goal is to prevent hematoma expansion, while mitigating prothrombotic complications
- Compared to alternative therapies, can be approximately \$25,000 less per regimens

Wesley Medical Center Current Reversal Strategy

Identifying Candidates for Reversal of FXa Inhibitors

- Traditional coagulation tests
 - Are not always sensitive to coagulopathy of FXa inhibitors
 - If elevated good correlation with supratherapeutic drug levels
- Calibrated anti-Xa values
 - Expensive
 - Not always widely available
- Anti-Xa values (unfractionated heparin (UFH); low molecular weight heparin (LMWH))
 - Assessing for drug presence rather than quantifiable value
 - UFH vs. LMWH
- Thromboelastography (TEG)
 - Prolonged R value in conventional TEG 5000
 - Prolonged activated clotting time if tissue factor utilized (Rapid-TEG)

Identifying Candidates for Reversal of FXa Inhibitors

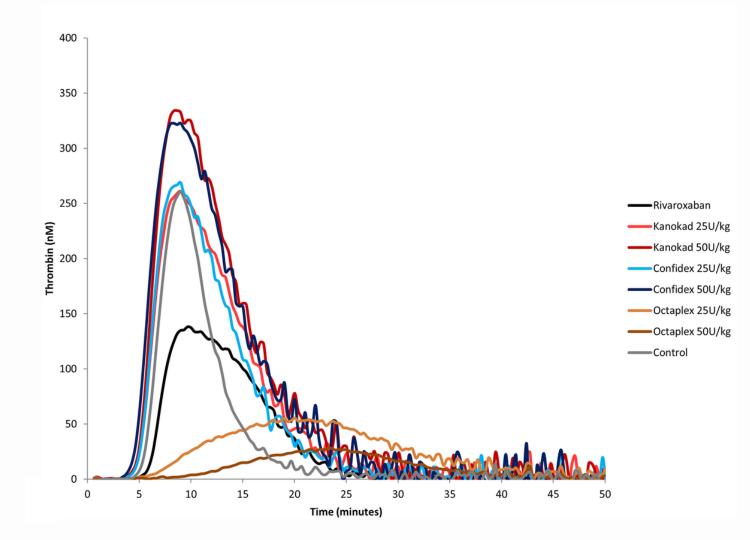
- Traditional coagulation tests
 - Are not always sensitive to coagulopathy of FXa inhibitors
 - If elevated good correlation with supratherapeutic drug levels
- Calibrated anti-Xa values
 - Expensive
 - Not always widely available
- Anti-Xa values (unfractionated heparin (UFH); low molecular weight heparin (LMWH))
 - Assessing for drug presence rather than quantifiable value
 - UFH vs. LMWH
- Thromboelastography (TEG)
 - Prolonged R value in conventional TEG 5000
 - Prolonged activated clotting time if intrinsic factor utilize (Rapid-TEG)

PCC Dosing for Emergent Reversal

- Dose finding studies never completed
- Endogenous thrombin potential has a maximum velocity
- Classic Dosing for Warfarin Reversal
 - Weight and INR based
 - 25 units/kg (INR 2 3)
 - 35 units/kg (INR 4 6)
 - 50 units/kg (INR > 6)
- Classic Dosing for FXa Inhibitor Reversal
 - NCS Guidelines Recommendation of 50 units/kg
 - Derived mainly from PCC dosing for warfarin reversal

Frontera, Lewin III. *Neurocrit Care*. 2016; Feb 24 (1): 6-46. Gilbert. *AM J Emerg Med*. 2020 Mar; 38(3): 686-687.

PCC Dosing for Emergent Reversal


- Dose finding studies for PCC never completed
- Endogenous thrombin potential has a maximum velocity
- Classic Dosing for Warfarin Reversal
 - Weight and INR based
 - 25 units/kg (INR 2 3)
 - 35 units/kg (INR 4 6)
 - 50 units/kg (INR > 6)
- Classic Dosing for FXa Inhibitor Reversal
 - NCS Guidelines Recommendation of 50 units/kg
 - Derived mainly from classic PCC dosing for warfarin reversal

Frontera, Lewin III. *Neurocrit Care*. 2016; Feb 24 (1): 6-46. Gilbert. *AM J Emerg Med*. 2020 Mar; 38(3): 686-687.

Traditional vs. Low Dose PCC Dosing

Low Dose or Fixed Dose PCC Options at Wesley Medical Center

- Warfarin reversal (Off-Label)
 - Extracranial hemorrhage: 1,000 units + 10 mg Vitamin K
 - Additional 500 units available if INR >10 or > 100 kg
 - ICH: 1,500 units + 10 mg Vitamin K
 - Additional 500 units available if INR >10 or > 100 kg

- FXa inhibitor reversal (Off-Label)
 - 25 units/kg capped at 2500 units
 - May give additional 25 units/kg at provider discretion

The Use of 25 Units Per Kilogram of PCC for FXa Inhibitor Bleeds

Berger. J Intensive Care Med. 2020 Nov; 35(11): 1203-1208

- Retrospective study who received at least 1 dose of PCC for FXa inhibitor ICH
- Primary endpoint: hemostasis per CT imaging
- Safety endpoint: thrombosis rate
- A total of 22 patients met criteria
 - Primary endpoint: 18/19 (94.7%) had effective hemostasis as measured on head CT
 - Safety endpoint: 2/22 (9.1%) had a thromboembolism

Hormese. J Thromb Thrombolysis. 2021 Mar 16 [epub]

- Retrospective study of patients who received high dose (50 u/kg) or low dose (25 u/kg) PCC
- Primary endpoint: hemostatic efficacy
- Safety endpoint: thrombosis rates
- A total of 47 patients met criteria
 - 24 patients in the high dose group
 - 23 patients in the low dose group
 - Primary endpoint: 87.5% in high dose group vs. 91.3% in low dose group
 - Safety endpoint: 8.3% in the high dose group vs. 4.4% in the low dose group

Wesley Medical Center Data on Fixed Dose PCC for Warfarin Reversal

Table 1

Demographic	Traditional dosing; $n = 30$	Low-dose; $n = 30$	P value
Median age; years (IQR)	79 (48–89)	78 (53–91)	0.38
Male; n (%)	16 (53.3)	15 (30)	0.79
Median dosing weight; kg (IQR)	83.6 (65-130)	77.6 (68-121)	0.37
Median dose; unit/kg (IQR)	28 (24–52)	17.8 (10-22)	0.03
Indication for anticoagulation; n (%)			
• Afib	19 (63.3)	17 (56.7)	0.59
• PE/DVT	5 (16.7)	6 (20)	0.74
 Mechanical valve 	5 (16.7)	6 (20)	0.74
• Other	1 (3.3)	1 (3.3)	1
Indication for reversal; n (%)			
• ICH	11 (36.7)	15 (50)	0.29
• GIB	6 (20)	7 (23.3)	0.75
 Emergent surgery 	11 (36.7)	6 (20)	0.15
• Other	2 (6.7)	2 (6.7)	1
Patient on concomitant anti-platelet; n (%)	17 (56.7)	18 (60)	0.79
Median Dosing Units (IQR)	2551 (1620-5210)	1521 (980-2099)	0.004
Median order to 4PCC administration time (min; IQR)	56 (45–135)	48 (24–63)	0.11

Gilbert. Am J Emerg Med. 2020 Apr; 38(4): 806 – 809.

Wesley Medical Center Data on Fixed Dose PCC for Warfarin Reversal

Demographic	Traditional dosing; $n = 30$	Low-dose; $n = 30$	P value
Median age; years (IQR)	79 (48-89)	78 (53–91)	0.38
Male; n (%)	16 (53.3)	15 (30)	0.79
Median dosing weight; kg (IQR)	83.6 (65-130)	77.6 (68-121)	0.37
Median dose; unit/kg (IQR)	28 (24–52)	17.8 (10-22)	0.03
Indication for anticoagulation; n (%)			
• Afib	19 (63.3)	17 (56.7)	0.59
• PE/DVT	5 (16.7)	6 (20)	0.74
 Mechanical valve 	5 (16.7)	6 (20)	0.74
• Other	1 (3.3)	1 (3.3)	1
Indication for reversal; n (%)			
• ICH	11 (36.7)	15 (50)	0.29
• GIB	6 (20)	7 (23.3)	0.75
 Emergent surgery 	11 (36.7)	6 (20)	0.15
• Other	2 (6.7)	2 (6.7)	1
Patient on concomitant anti-platelet;	17 (56.7)	18 (60)	0.79
n (%)			
Median Dosing Units (IOR)	2551 (1620-5210)	1521 (980–2099)	0.004
Median order to 4PCC administration	56 (45–135)	48 (24-63)	0.11
time (min; IQR)	ada de		

Table 1

Wesley Medical Center Data on Fixed Dose PCC for Warfarin Reversal

Table 2

Endpoint data for entire sample size.

Demographic	Traditional Dosing; $n = 30$	Low-Dose; $n = 30$	P value
# of patients with INR < 1.6 after 4PCC infusion; n (%)	27 (90)	26 (86.7)	0.68
# of patients with INR < 1.4 after 4PCC infusion; n (%)	22 (73.3)	15 (50)	0.06
Median initial INR (IQR)	3.25 (2.1-30)	2.95 (2.2-30)	0.28
Median INR post 4PCC administration (IQR)	1.3 (1.1-19)	1.35 (0.9-2.1)	0.16
Concomitant vitamin K administration; n (%)	27 (90)	29 (96.7)	0.3
Patient Received FFP ≤ 24 h of 4PCC Infusion; n (%)	7 (23.3)	7 (23.3)	1
Thrombotic events \leq 7 days of 4PCC infusion; n (%)	0	1 (3.3)	1
Median total hospital length of stay; days (IQR)	6 (2-41)	6 (3-18)	0.81
Mortality; n (%)	8 (26.7)	4 (13.3)	0.19
Total dosing units spared		31,870	-
Dosing units/patient spared	-	1062	-
Percentage of units spared (%)	-	43	-

- Utilizing common coagulation tests may be able to prevent erroneous administration
- Lower dose strategies seem to be as effective at achieving reversal of coagulation parameters as well as hemostasis
- Utilizing lower dose strategies might be an effective tool at reducing time to administration and operational burden

Assessment Question #1 of 3

Push dose administration is most studied in what antibiotic class?

- a. Cephalosporins
- b. Tetracyclines
- c. Carbapenems
- d. Fluoroquinolones

Assessment Question #2 of 3

What is NOT considered a barrier to implementing emergency medicine pearls?

- a. Single dose oral medication
- b. Push dose medication
- c. Infusion medication

Assessment Question #3 of 3

What is NOT true regarding implementing push dose medication?

- a. Push dose allows for faster administration
- b. Push dose is approved for all STAT medications
- c. Push dose versus an infusion has more risk for fatality
- d. B and C

Conclusion

- Time sensitive interventions can be expedited by adapting to IV push for certain medication classes
- IV push therapies have the potential to reduce operational barriers; especially when ED boarding is prevalent
- Optimizing dosing of PCC can reduce technician burden as well as reduced time to administration in emergent situations
- An entire presentation in 2021 without mentioning COVID deserves applause right?

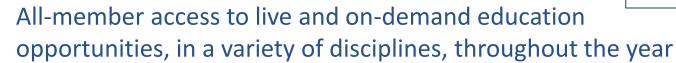
References

- 1. Sepsis Bundle Project (SEP). Specifications Manual for National Hospital Inpatient Quality Measures, 2017.
- 2. Kumar. Crit Care Med. 2006 Jun; 34(6): 1589 1596.
- 3. Spencer. Hospital Pharmacy. 2018; 53(3): 157 0 169.
- 4. Hays. Am J Health Syst Pharm. 2020 June 23; 77(13): 1051 1053
- 5. Sánchez. Seizure. 2019 May;68:16-21.
- 6. Kay. Ann Clin Transl Neurol. 2019 Dec;6(12):2413-2425.
- 7. Brophy. Neurocrit Care. 2012 Aug; 17(1): 3-23.
- 8. Panos. *Circulation*. 2020 May 26;141(21):1681-1689.
- 9. Gilbert. Ann Pharmacother. 2019 Nov;53(11):1167.
- 10. Frontera, Lewin III. Neurocrit Care. 2016; Feb 24 (1): 6-46.
- 11. Gilbert. Am J Emerg Med. 2020 Mar; 38(3): 686-687
- 12. Giffard-Quillon. Thromb J. 2020 Aug 24;18:15
- 13. Gilbert. Am J Emerg Med. 2020 Apr; 38(4): 806 809.

Thank you...

Brian Gilbert, PharmD, BCPS, BCCCP Email: brian.gilbert@wesleymc.com

Take advantage of these valuable member resources


- Clinical Evidence Reviews
- Product Feature Summaries & Technology Reviews
- Clinical Question Documents
- Conversion Guides
- Live & On-demand Webinars
- Annual HTU Conference Education
- The Source magazine
- 10-Spot Video Recordings
- Collaborative Summits & Communities
- Service Line Consulting & Toolkits
- Innovation Center

Questions or more info: clinical.research@healthtrustpg.com

www.healthtrustpg.com/clinical-resources/

All-member access to resources designed for clinical integration product discussions between facility supply chain leaders & clinicians

www.healthtrustpg.com/education

www.healthtrustpg.com/thesource/

24/7 online access to HealthTrust's member magazine, *The Source*. Also published quarterly in print format

www.healthtrustpg.com/healthtrust-innovation-center

Members can invite suppliers with new technology to submit their innovative products for review

ESOURCE