What's New in Diabetes Management

A Focus on Transitions of

Care A presentation for HealthTrust Members 5/8/2021

Jaclyn O'Connor PGY-1 Pharmacy Resident Atlantic Health System AmulyaUppala PharmD, BCPS, Preceptor

Disclosures

The presenter and her preceptors have no financial relationships with any commercial interests pertinent to this presentation.

This program may contain the mention of drugs or brands presented in a case study or comparative format using evidence-based research.

Such examples are intended for educational and information purposes and should not be perceived as an endorsement of any supplier, brand or drug.

Objectives for Pharmacists and Nurses

- Discuss indications and place in therapy for the new antihyperglycemic agents
- Identify key differences between the glucagon-like peptide 1 receptor agonists (GLP1 RA) and the sodium-glucose cotransporter 2 inhibitors (SGLT2i)
- Describe the role of the new diabetes agents within a transitions of care plan

Objectives for Pharmacy Technicians

- Identify medications within the same class to ensure there is not duplication of therapies while obtaining medication history
- Outline common lab parameters used to assess the effectiveness of diabetes treatment
- Describe different storage requirements for recommended agents

Presentation Plan

Transitions of Care Considerations

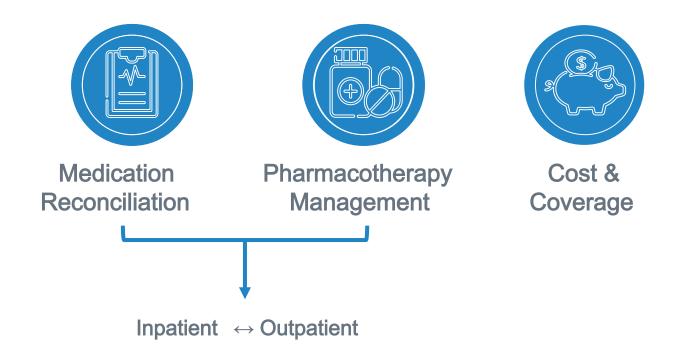
O2 American Diabetes Association (ADA) Guideline Updates for the management of Type 2 Diabetes

03 Review of SGLT2 is

05

Utility of once weekly insulin icodec

Transitions of Care

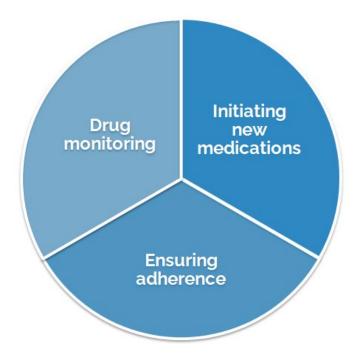

Transitions of Care

- Coordination and continuation of care as patient is transferred between setting
- Effective transitions of care
 - Patient centered
 - Promote interprofessional communication
- Errors most commonly occur in the transfer from inpatient to community setting
 - \circ Inconsistent care coordination $\approx 20\%$ of 30 day readmissions

Medication reconciliation must be performed at all areas of transition!

Aspects of Transitions of Care

Medication Reconciliation

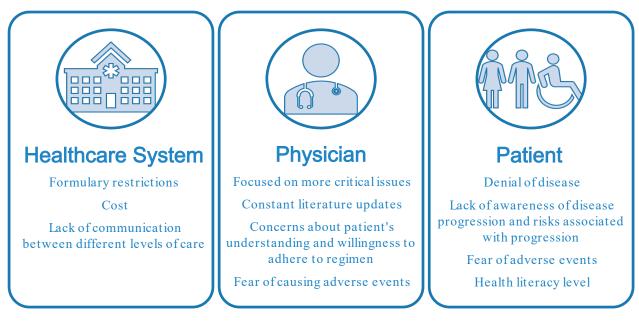

Outpatient to Inpatient

- Confirm the accuracy of prior to admission medication list
- Check the patient has an indication for all medications
- Include over-the-counter and medications taken as needed
- Assess appropriateness for reinitiation inpatient

Inpatient to Outpatient

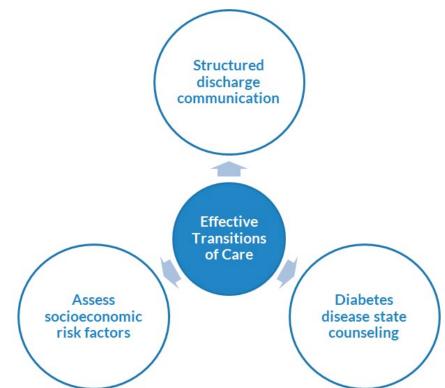
- Assess if each medication should continue upon discharge
- Ensure that the patient has access to medications
- Educate patient on changes to previous medication list

Pharmacotherapy Management


Cost & Coverage

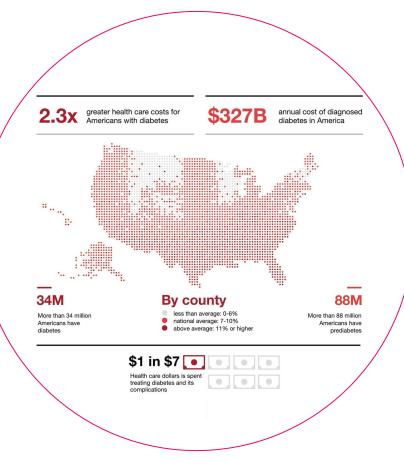
- Insurance coverage
 - Copays
 - Coverage gaps
- Formulary availability
 - Hospital and insurance formularies

TIER DRUG TYPE		COST	
	1	Preferred Generics	\$
	2	Generics	\$\$
	3	Preferred Brands 🗲	\$\$\$
	4	Non-Preferred	\$\$\$\$
	5	Specialty 🗾	\$\$\$\$\$

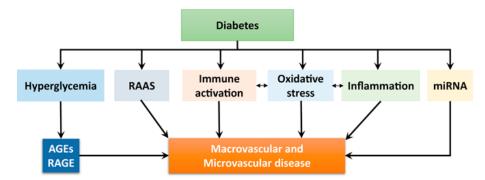

Source: Prescription drug formulary: What you need to know. Health Partners website. <u>https://medicarehelp.healthpartners.com/blog/prescription-drug-tiers/</u>. Updated 2021. Accessed April 10,2021.

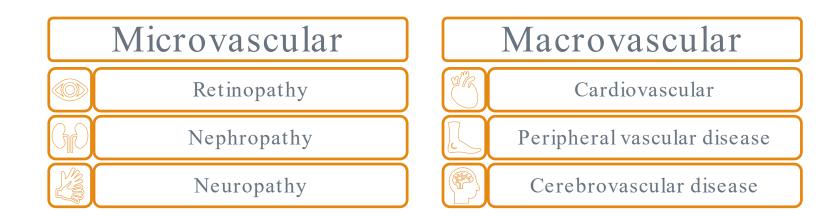
Clinical Inertia in Diabetes

- Prolonged periods of hyperglycemia are associated with...
 - Reduced life expectancy
 - Increased risk for myocardial infarction (MI), heart failure, and stroke


ADA Guideline Recommendations on Transitions of Care

Type 2 Diabetes in the United States


- In 2018, 34.2 million Americans (10.5% of the population) had diabetes
- . 1.5 million Americans are diagnosed with diabetes every year
- Microvascular & macrovascular complications
 - Leading cause of morbidity and mortality for individuals with diabetes
 - \$37.3 billion in cardiovascularrelated spending per year associated with diabetes


Management & Complications of Diabetes

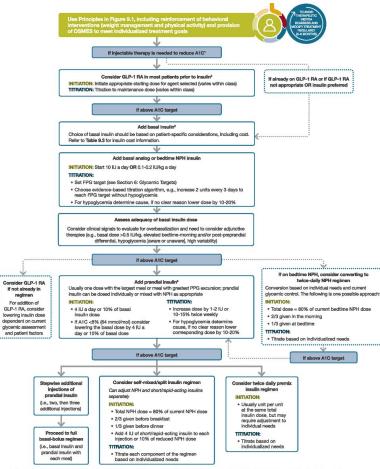
- Assessing glycemic control
 - Hemoglobin A1 c: < 7%
 - Measured every 3-6 months
 - Preprandial plasma glucose: 80-130 mg/dL
 - Peak postprandial plasma glucose: <180 mg/dL
- Hyperglycemia can accelerate mitochondrial production of reactive oxygen species (ROS)
- ROS interact with DNA to
 - Decrease nitric oxide production
 - Cause endothelial dysfunction
 - Increase inflammatory pathways
 - Stimulate fibrosis
 - Vasoconstriction
 - Platelet aggregation

Source: Petrie JR, et al. *Can JCardiol*2018;34(5):575-584. Burgos-Morón E, et al. *Journal of Clinical Medicin*£019;8(9):1385. American Diabetes Association. *Diabetes Car*£021;44(Suppl1):S73-S84.

Complications of Diabetes

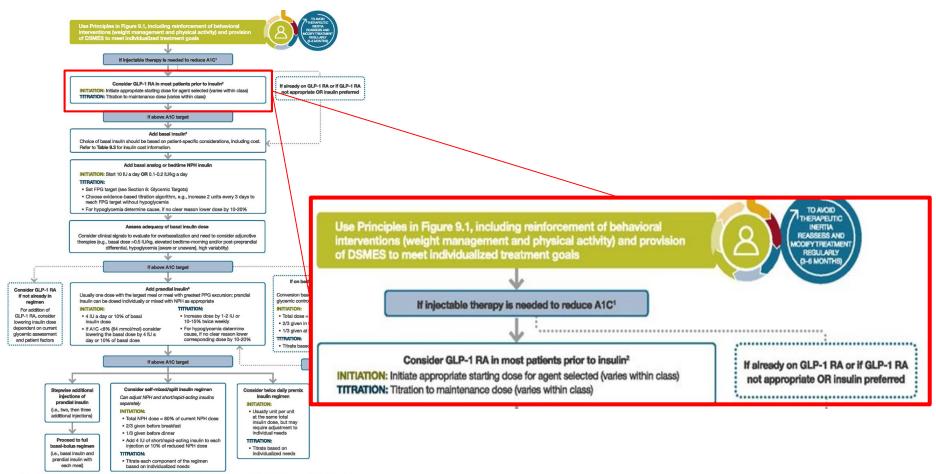
Updates to Recent ADA Guidelines

- The choice of medication added to metformin is based on the clinical characteristics
 - Established atherosclerotic cardiovascular disease (ASCVD) or indicators of high ASCVD risk
 - Heart failure
 - Chronic kidney disease (CKD)
 - Risk for specific adverse drug effects
- Other considerations include safety, tolerability, and cost of the additional medication
- Guideline recommendations have been updated to include a dedicated decision pathways for patients with ASCVD/ high risk, chronic kidney disease and heart failure
- **GLP-1 RA**have been added to insulin pathway



Source: American Diabetes Association *Diabetes Care* 021;44(Suppl1):S111-S124.

Source: American Diabetes Association Diabetes Car@021;44(Suppl1):S111-S124.


 Consider insulin as the first injectable if evidence of ongoing catabolism, symptoms of hyperglycemia are present, when ATC levels (>10% (86 mmo/lmc)) or blood glucose levels (>300 mg/dL (162 mmo/L)) are way high, or a disposite of type 1 disbates is a possibility.
 When selecting (201-PA, consider GLP-1 RA with proven CVD benefit. Oral or Version (C) and (C) and

2. When selecting GLP-1 RA, consider: patient preference, A1C lowering, weight-lowering effect, or frequency of Injection. If CVD, consider GLP-1 RA with proven CVD ber injectable GLP-1 RA are appropriate.

- Injectable GLP-1 RA are appropriate. 3. For patients on GLP-1 RA and basal insulin combination, consider use of a fixed-ratio combination product (DegLira or iGlarLix).
- 4. Consider switching from evening MPH to a basel analog if the patient develops hypoglycemia and/or frequently forgets to administer NPH in the evening and would be better managed with an AM does of a long-acting basel insulin.

5. If adding prandial insulin to NPH, consider initiation of a self-mixed or premixed insulin regimen to decrease the number of injections required.

Source: American Diabetes Association Diabetes Care 021;44(Suppl1):S111-S124.

 Consider insulin as the first injectable if evidence of ongoing catabolism, symptoms of hyperglycomia are present, when A1C levels (>10% [86 mmol/mol]] or blood glucose levels (>300 mg/dL [16.7 mmol/L]) are very high, or a diagnosis of type 1 diabetes is a possibility.

2. When selecting GLP-1 RA, consider: patient preference, ATC lowering, weight-lowering effect, or frequency of Injection. If CVD, consider GLP-1 RA with proven CVD benefit. Oral or

injectable GLP-1 RA are appropriate.

3. For patients on GLP-1 RA and basal insulin combination, consider use of a fixed-ratio combination product (IDegLira or iGlarLixi).

3. For patients on GLP-1 FA and basis insulin combination, consider use of a tixed-ratio combination product (UbgLit a or Gattala).
4. Consider writching from evening NPH to a basis analogi if the patient develops hypoglycemia and/or frequently forgets to administer NPH in the evening and would be better managed

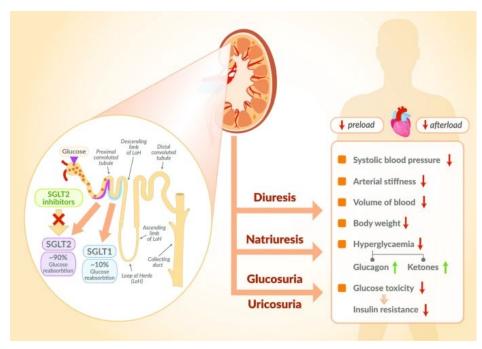
Consider switching from evening NPH to a basal analog if the patient develops hypoglycemia and/or frequently forgets to administer NPH in the evening and would be better with an AM dose of a long-acting basal insulin.

5. If adding prandial insulin to NPH, consider initiation of a self-mixed or premixed insulin regimen to decrease the number of injections required.

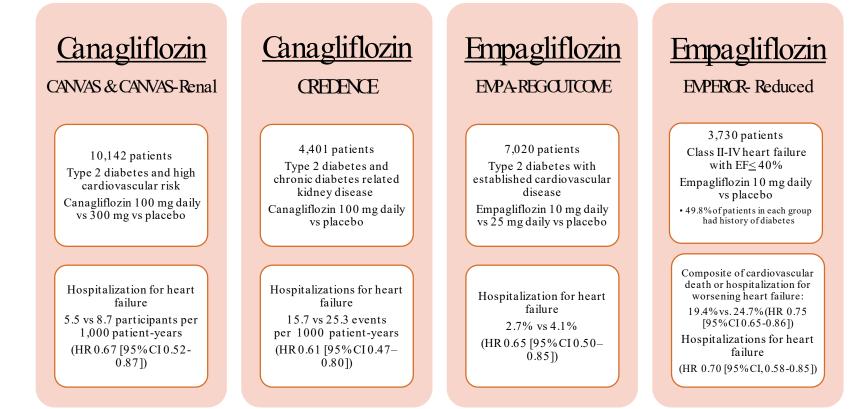
Source: American Diabetes Association Diabetes Car2021;44(Suppl1):S111-S124.

Sodium-glucose cotransporter 2 inhibitors (SGLT2i)

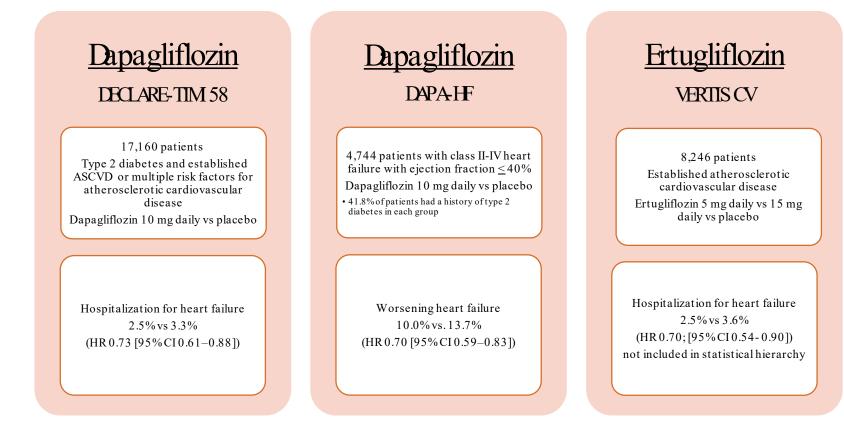
SGLT2 Inhibitors


- Common suffix: "-gliflozin"
 - Canagliflozin (Invokanaé)
 - Empagliflozin (Jardianceé)
 - Dapagliflozin (Farxigaé)
 - Ertugliflozin (Steglatroé)
- A1c lowering potential
 - o **0.5 1%**
- Dosing considerations
 - Tablet
 - Dose <u>without</u> regard to meals
 - Renal dose adjustments required
- Storage
 - \circ Room temperature: 25 °C or 77 °F
 - Excursions permitted between 15-30 °C or 59-86 °F

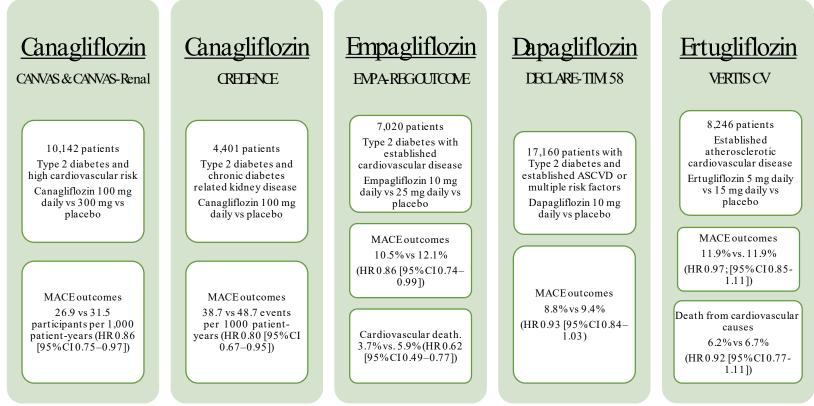
Source: Invokana (canagliflozin) [prescribing information]. Titusville, NJ: Janssen Pharmaceuticals; July 2013 Farxiga (dapagliflozin) [prescribing information]. Princeton, NJ: Bristol-Myers Squibb Company; August 2014 Jardiance (empagliflozin) [prescribing information]. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals, Inc; December 2016 Steglatro (ertugliflozin) [prescribing information]. Whitehouse Station, NJ: Merck & Co., Inc.; December 2017 American Diabetes Association. *Diabetes Care* 021;44(Suppl 1):S111-S124.


Medication	Dosing	Renal Dose Adjustment	
Canagliflozin	100 - 300 mg PO daily	eGFR 30-60 mL/min	100 mg PO daily
		eGFR < 30 mL/min	Not recommended
Empagliflozin	10 - 25 mg PO daily	eGFR < 30 mL/min	Not recommended
Dapagliflozin	5 - 10 mg PO daily	eGFR < 25 - 30 mL/min	Not recommended
Ertugliflozin	5 - 15 mg PO daily	eGFR < 30 mL/min	Contraindicated

SGLT2 Inhibitors

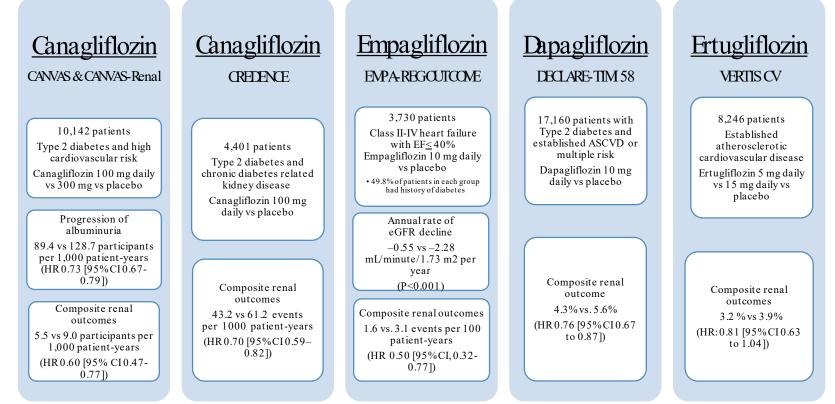

- Mechanism of action
 - Proximal convoluted tubule
 - Prevents reabsorption of glucose and sodium
 - Promotes glucose excretion
- Benefits
 - Weight loss
 - Minimal hypoglycemia risk
 - Heart failure, ASCVD, and diabetic kidney disease

SGLT2i: Heart Failure Benefit



SGLT2i: Heart Failure Benefit

Source: Wiviott SD, et al *N EnglJ Med*2019;380(4):347-357. McMurray JJV, et al. *N EnglJ Med*2019;381(21):1995-2008. Cannon CP, et al. *N EnglJ Med*2020;383(15):1425-1435.


SGLT2i: ASCVD Benefit

MACE outcomes : composite endpoint including cardiovascular death, myocardial infarction, or stroke

Source: Neal B, et al. *N EnglJ Med*2017;377(7):644-657. Perkovic V, et al. *N EnglJ Med*2019;380(24):2295-2306. Zinman B, et al. *N EnglJ Med*2015;373(22):2117-2128. Zinman B, et al. *N EnglJ Med*2015;373(22):2117-2128.

SGLT2i: Diabetic Kidney Disease Benefit

Composite renal outcome _: sustained 40% reduction in eGFR, need for renal replacement therapy, doubling of serum creatine, or death from renal causes

Source: Neal B, et al. *N EnglJ Med*2017;377(7):644-657. Perkovic V, et al. *N EnglJ Med*2019;380(24):2295-2306. Wiviott SD, et al. *N EnglJ Med*2019;380(4):347-357. Zinman B, et al. *N EnglJ Med*2015;373(22):2117-2128. Cannon CP, et al. *N EnglJ Med*2020;383(15):1425-1435.

SGLT2i: Adverse Events cont.

Genitourinary infections (8-12%)

- <u>Mechanism</u>: glucosuria
- Genital mycotic infections and bacterial urinary tract infections
- Five-fold increase in genital mycotic infections compared to other medications

Fournier's gangrene (<1%)

• <u>Mechanism</u>: excess glucose in the urine allows bacteria to grow and infethe tissue under the skin that surrounds muscles, nerves, fat, and blood vessels of the perineum

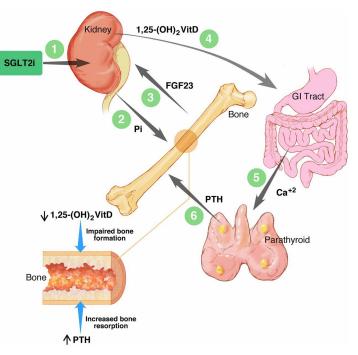
Acute kidney injury (1-3%)

- <u>Mechanism</u>: proximal tubular natriuresis
- <u>Risk factors</u>: use with other renin-angiotensin-aldosterone system antagonists and traditional diuretics
 - Potential risk of AKI with canagliflozin and dapagliflozin is likely attributable to the high-risk population and not related to any inherent nephrotoxicity of these agents

SGLT2i: Adverse Events cont.

Volume depletion (1-4%)

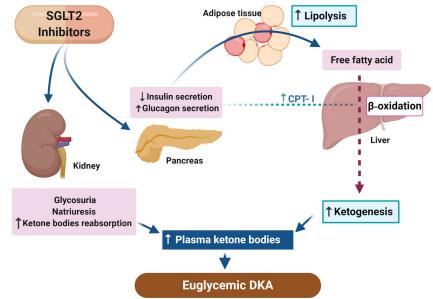
- <u>Mechanism</u>: osmotic diuresis
- CANVAS trial showed significant increase in canagliflozin group
- Can lead to other complications


Amputation

- <u>Mechanism</u>: potentially due to decreased organ perfusion in the setting of volume depletion
- <u>Risk factors</u>: history of amputation or peripheral vascular disease
 - CANVAS trial odd ratio = 1.97

Skeletal Fractures

- <u>Mechanism</u>: weight loss, impaired calcium excretion, or falls
- CANVAS trial showed significant increase in fractures
 - Odds ratio = 1.26


Source:LupsaBC, et al.*Diabetologia*2018;61(10):2118-2125. Beitelshees AL, et al. *Diabetes*2019;68(6):1109-1120

SGLT2i: Adverse Events

Euglycemic diabetic ketoacidosis (<1%)

- Presentation
 - Nausea, vomiting, malaise
 - Blood glucose level: <250 mg/dL
 - Ketones in blood and urine
 - Anion-gap metabolic acidosis
 - pH <7.3, serum bicarbonate of <18mEq/L
- Exacerbated by illness, surgery, increase ethanol intake, or decreased food intake

Source:LupsaBC, et al.Diabetologia2018;61(10):2118-2125.

Meena P. SGLT2 Inhibitor-induced Euglycemic Diabetic Ketoacidosis. Renal Fellow Network website. https://www.renalfellow.org/2020/09/08/sglt2-inhibitor-inducedeuglycemic-diabetic-ketoacidosis/.updated September 8,2020. Accessed April 10,2021.

SGLT2i Transitions of Care

Medication reconciliation

- Check for class duplication within combination products
- Continuation of medication
 - Assess risk for euglycemic DKA
 - Experiencing nausea, vomiting, malaise
 - Severe infection
 - Planned surgery within 3 days
 - Decreased oral intake (NPO, malnutrition)
 - Consider re-starting 1-2 days prior to discharge

Brand name	Ingredients		
Invokameté	Canagliflozin and metformin		
Invokamet XRé	Canagliflozin and metformin extended-release		
Xigduo XRé	Dapagliflozin and metformin extended-release		
Qterné	Canagliflozin and sitagliptin		
Glyxambié	Empagliflozin and linagliptin		
Synjardyé	Empagliflozin and metformin		
Synjardy XRé	Empagliflozin and metformin extended-release		
Seglurometé	Ertugliflozin and metformin		
Steglujan é	Ertugliflozin and sitagliptin		

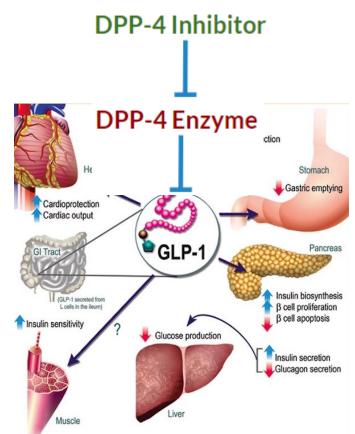
SGLT2i Transitions of Care

Pharmacotherapy management

- Initiation of new medication
 - Assess for contraindications
 - History of euglycemic DKA, Fournier's gangrene
 - Consider starting 1-2 days prior to discharge if on hospital formulary
- Monitoring
 - Renal function
 - Volume status
 - Systolic blood pressure >100 mmHg
 - Weight changes
 - Adverse events
- Ensuring adherence
 - Providing education
 - Utilizing teach back

SGLT2i Transitions of Care

Cost & Coverage


- Brand only products
- Formulary coverage
 - Preferred agent
- Patient assistance program
 - Different criteria for insured patients, Medicare/ Medicaid, and uninsured patients

Compound(s)	Dosage strength/product	Median 30 day AWP	Median 30 day NADAC			
Ertugliflozin	15 mg	\$354	\$284			
Dapagliflozin	10 mg	\$621	\$496			
Empagliflozin	25 mg	\$627	\$501			
Canagliflozin	300 mg	\$622	\$499			
AWP: average wholesale price NADAC: National Average Drug Acquisition Cost						

Glucagon-like peptide 1 receptor agonists (GLP-1 RA)

GLP-1 Receptor Agonists

- Common suffix: "-tide"
 - Exenatide (Byettaé, Bydureoné)
 - Liraglutide (Victozaé)
 - Dulaglutide (Trulicityé)
 - Semaglutide(Ozempicé, Rybelsusé)
 - Lixisenatide (Adlyxiné)
- A1c lowering potential
 - o 0.8-1.7 %
- Mechanism of action
 - Analog of glucagonlike peptide-1
 - Increases glucosedependent insulin secretion
 - Decreases inappropriate glucagon secretion
 - Increases Bcell growth/replication
 - Slows gastric emptying and decreases food intake

GLP-1 Receptor Agonists

- Dosing considerations
 - Oral tablet or subcutaneous injection
 - Twice daily, daily or weekly administration
 - Renal dose adjustment

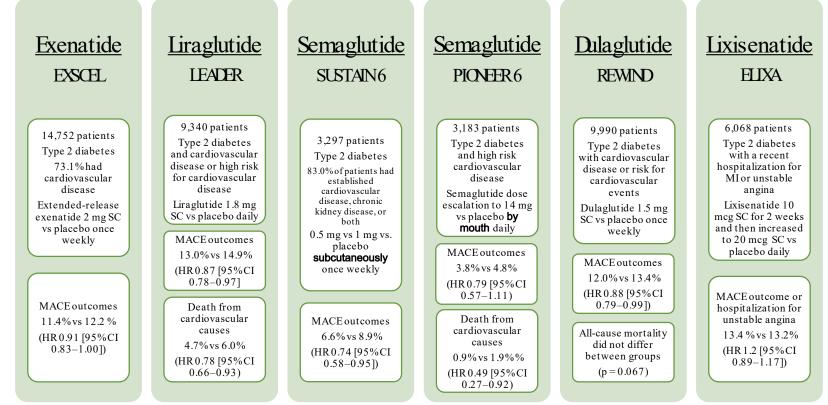
Medication	Starting Dose	Maximum Dose	Titration	Renal Dose Adjustment	
Exenatide	IR: 5 mcg SC BID prior to meal	10 mcg SC BID prior to meal	Increase to 10 mcg BID after 1 month	CrCl < 30 mL/min Not recommended	
	ER: 2 mg SC once weekly			eGFR <45 mL/min Not recommended	
Liraglutide	0.6 mg SC daily	1.8 mg SC daily	Increase 1.2 mg after one week, may increase to 1.8 mg if needed for glycemic control	No adjustments necessary	
Dulaglutide	0.75 mg SC once weekly	4.5 mg SC once weekly	Increase to 1.5 mg after 4 to 8 weeks if needed to achieve glycemic goals. If additional glycemic control is needed, may further increase to 3 mg after at least 4 weeks and then to a maximum of 4.5 mg after at least 4 weeks	No adjustments necessary	
Semaglutide	3 mg PO daily	14 mg PO daily	Increase to 7 mg after 30 days, then to 14 mg after another 30 days if needed for glycemic control	No adjustments necessary	
	0.25 mg SC once weekly	1 mg SC once weekly	Increase to 0.5 mg after 4 weeks, may increase to 1 mg after an additional 4 weeks if needed to achieve glycemic goals		
Lixisenatide	10 mcg SC daily	20 mcg SC daily	Increase to 20 mcg after 14 days	eGFR < 15 mL/min Not recommended	

Source: Bydureon(exenatide) [prescribing information]. Wilmington, DE: AstraZeneca Pharmaceuticals LP, Rybelsus(semaglutide) [prescribing information]. Bagsvaerd, Denmark: Novo Nordisk Inc.; Octob@009. Victoza (liraglutide) [prescribing information]. Bagsvaerd, Denmark: Novo Nordisk Inc.; Augus@017. Trulicity (dulaglutide) [prescribing information]. Indianapolis, IN: Eli Lilly and Company; Januarg017.

GLP-1 Receptor Agonists

• Storage considerations

Medication	Formulation	Prior to first use	After first use	
Exenatide (IR) Pre-filled, multi -dose pen		Refrigerated at 36°F to 46°F (2°C to 8°C)	Do not to exceed 77°F (25°C) Discard after 30 days	
Exenatide (ER) Single dose vial with diluent or pen		Refrigerated at 36°F to 46°F (2°C to 8°C) until expiration date on package or room temperature 77°F (25°C) for 4 weeks	N/A	
Liraglutide Pre-filled, multi -dose p		Refrigerated at 36 °F to 46 °F (2°C to 8°C)	Room Temperature 59 °F to 86 °F (15°C to 30 °C) or Refrigerated at 36 °F to 46 °F (2°C to 8°C) Discard after 30 days	
Dulaglutide	Single use pen or syringe	Refrigerated at 36 °F to 46 °F (2°C to 8°C)	N/A	
Semaglutide (tablet) Blister packed tablets		Store at 68° to 77°F (20 to 25°C); excursions permitted to 59° to 86°F (15° to 30°C)		
Semaglutide (injection)	Pre-filled, multi -use pen injector	Refrigerated at 36 °F to 46°F (2°C to 8°C)	Room temperature 59 °F to 86 °F (15°C to 30 °C) or refrigerated at 36 °F to 46 °F (2°C to 8 °C) Discard after 56 days	
Lixisenatide Pre-filled, multi -use pen		Refrigerated at 36 °F to 46°F (2°C to 8°C)	Store below 86 °F (30°C) Discard after 14 days	


Source:Bydureon(exenatide) [prescribing information]. Wilmington, DE: AstraZeneca Pharmaceuticals LP; October 2017. Byetta (exenatide) [prescribing information]. San Diego, CA: Amylin Pharmaceuticals, Inc.; October 2009. Victoza (liraglutide) [prescribing information]. Bagsvaerd, Denmark: Novo Nordisk Inc.; August 2017. Trulicity (dulaglutide) [prescribing information]. Indianapolis, IN: Eli Lilly and Company; January 2017. Rybelsus(semaglutide) [prescribing information]. Bagsvaerd, Denmark: Novo Nordisk Inc.; September 2019. Ozempic (semaglutide) [prescribing information]. Bagsvaerd, Denmark: Novo Nordisk Inc.; December 2017. Adlyxin (lixisenatide) [prescribing information]. Bridgewater, NJ:Sanofi-aventis U.S. LLC; July 2016.

GLP-1 Receptor Agonists

• Benefits

- Weight loss
- Minimal hypoglycemia risk
- ASCVD and diabetic kidney disease
- Adverse Events
 - Gastrointestinal effects
 - Pancreatitis
 - Injection site reactions
- Black Box Warning
 - Risk of thyroid C-cell tumors

GLP-1 RA: ASCVD Benefit

MACE outcomes : composite endpoint including cardiovascular death, myocardial infarction, or stroke

 Source: Holman RR, et all Engl Med 2017;377(13):1228-1239. Husain M, et al. N Engl Med 2019;381(9):841-851.

 Marso SP, et al. N Engl Med 2016;375(4):311-322.
 Gerstein HC, et al. Lancet 2019;394(10193):121-130.

 Marso SP, et al. N Engl Med 2016;375(19):1834-1844.
 Muskiet MHA, et al. Lancet Diabetes Endocrin@018;6(11):859-869.

GLP-1RA: Diabetic Kidney Disease Benefit

Liraglutide LEADER

9,340 patients Type 2 diabetes and cardiovascular disease or high risk for cardiovascular disease Liraglutide 1.8 mg SC vs placebo daily

New or worsening nephropathy 5.7% vs 7.2% (HR 0.78 [95% CI 0.67–0.92)

SUSTAIN6

3,297 patients Type 2 diabetes 83.0% of patients had established cardiovascular disease, chronic kidney disease, or both

0.5 mg vs 1 mg vs.placebo subcutaneously once weekly

New or worsening nephropathy 3.8% vs. 6.1% (HR 0.64 [95% CI 0.46–0.88])

Source:Marso SP, et al *N EnglJ Med* 2016;375(4):311-322. Marso SP, et al. *N EnglJ Med* 2016;375(19):1834-1844.

<u>Composite renal outcome</u>: sustained 40% reduction in eGFR, need for renal replacement therapy, doubling of serum creatines, or death from renal causes

GLP-1 RA Transitions of Care

Admission medication reconciliation

- Check for class duplication
 - Combination products
 - DPP-4 inhibitors (-gliptins)
- Confirm dosing schedule for weekly formulations
- Continuation of medication inpatient
 - Typically not on hospital formularies
 - Combination GLP-1 RA and insulin products
 - Need to adjust insulin dose based in GLPI RA requirements
 - Recommended increasing basal insulin by 10% with removal of GLP RA

Brand name	Ingredients
Soliquaé	Lixisenatide and insulin glargine
Xultophyé	Liraglutide and insulin degludec

GLP-1 RA Transitions of Care

Pharmacotherapy management/ discharge medication reconciliation

- Ensuring adherence
 - Slow titration schedule
 - Education on injection technique
 - Once weekly formulations
- Monitoring
 - Renal function (for specific agents)
 - Weight changes
 - Adverse events

- Initiation of new medication upon discharge
 - Benefits of adding liraglutide vs insulin upon discharge
 - Pasquel et al. showed significant reduction in A1c, hypoglycemia events, and body weight at 26 weeks
 - Significant increase in GI side effects leading to discontinuation in 10% of patients
- Transitioning from GLP-1RA monotherapy to combination
 - Different concentrations of GLP-1 RA in combination formulations compared to single agent formula

Brand name	Monotherapy Dose (per mL)	Combination Dose (per mL)
Soliquaé	Lixisenatide: 50- 100 mcg	Lixisenatide: 33 mcg Insulin glargine: 100 units
Xultophyé	Liraglutide: 6 mg	Liraglutide: 3.6 mg Insulin degludeα 100 units

GLP-1 RA Transitions of Care

Cost & Coverage

- Brand only products
- Formulary coverage
- Patient assistance programs
 - Different criteria for insured patients, Medicare/ Medicaid, and uninsured patients

g powder for ension or pen 10 μg pen	\$882	\$706	2 mg
10 ug pen	M750		
	\$752	\$720	20 µg
/0.5 mL pen	\$957	\$766	4.5 mg
1 mg pen	\$973	\$779	1 mg
1 mg tablet	\$927	\$738	14 mg
ng/3 mL pen	\$1,161	\$930	1.8 mg
µg/3 mL pen	\$774	N/A	20 µg
	/0.5 mL pen 1 mg pen 4 mg tablet mg/3 mL pen μg/3 mL pen	1 mg pen \$973 4 mg tablet \$927 mg/3 mL pen \$1,161 μg/3 mL pen \$774	1 mg pen\$973\$7794 mg tablet\$927\$738mg/3 mL pen\$1,161\$930μg/3 mL pen\$774N/A

Comparing SGLT2i & GLPIRA

	SGLT2i	GLP-1 RA
Route	Oral	Oral & subcutaneous
Adherence	+	++
HF benefit	√ (except ertugliflozin)	Х
ASCVD benefit	\checkmark	\checkmark
DKD benefit	\checkmark	√ (only liraglutide & SQ semaglutide)
Cost	\$\$	\$\$\$
Hospital availability	~√	Х
Insurance coverage	++	+
Storage	Roomtemp	Refrigerated or room temp

Insulin Icodec

Insulin icodec Literature Review

Phase 2 Study					
Population	 N = 247 patients Type 2 diabetes Diagnosed in last 180 days A1 c = 7.0 - 9.0% Receiving stable daily doses of metformin ± DPP-4 inhibitor Not previously on long-term insulin 				
Intervention	Once-weekly insulin icodec (196 hours (8.1 days)) 70 units SC + once-daily placebo vs. once-daily insulin glargine SC 10 units + once- weekly placebo for 26 weeks 1:1 randomization Stratified based on dipeptidyl peptidase 4 (DPP-4) inhibitor use (~46% in each group) Insulin doses were adjusted weekly to achieve fasting blood glucose of 70-108 mg/dL				
	Primary		lcodec	Glargine	Difference or ratio (95% CI)
		Change in A1 c (mean)	-1.33	-1.15	-0.18 [-0.38 - 0.02]
Outcomes	Secondary	Mean weekly insulin dose	229.06 (~33 units/day)	284.05 (~41 units/day)	0.81 [0.69 – 0.94]
5 a. c 5 m c 5	Safaty	Hypoglycemia alert (%)	67 (53.6)	46 (37.7)	OR: 1.84 [1.10 – 3.07]
		Clinically significant or severe hypoglycemia (%)	20 (16.0)	12 (9.8)	OR: 1.70 [0.79 – 3.66]

Insulin Icodec: Study Considerations

Population

- Diabetes diagnosis in last 6 months with A1c below 10%
- Excluded if taking GLP-1 RA

Real world application

- All glucose levels were measured using continuous glucose monitoring device (Freestyle Libre Pro)
- Rapid dose adjustments
- Weekly follow up

Statistical Analysis

- Study not powered
- Patients included in statistical analysis for efficacy endpoints were limited to those who
- Did not receive ancillary therapy (other than metformin or DPP-4 inhibitors)
- Had at least 70% flash glucose monitoring in last 2 weeks

Insulin Icodec: Transitions of Care Considerations

Potential Benefits

Reduce number of injections and increase compliance

Similar A1 c and fasting blood glucose reduction compared to daily administration

Potential Pitfalls

Study showed increased risk for hypoglycemia

First product of its kind = \$\$

- Kristeller J. Transition of care: pharmacist help needed. Hosp Pharm. 2014;49(3):242516.
- Prescription drug formulary: What you need to know. Health Partners website. https://medicarehelp.healthpartners.com/blog/prescription -drug-tiers/. Updated 2021. Accessed April 10, 2021.
- Okemah J, Peng JQuiñones M. Addressing Clinical Inertia in Type 2 Diabetes Mellitus: A Review. AdTher. 2018;35(11):1735-1745.
- American Diabetes Association. 15. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes Care. 2021;44(Suppl 1):S211S220.
- American Diabetes Association. 1. Improving Care and Promoting Health in Populations: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S-7S14.
- American Diabetes Association. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes 2021. Diabetes Care. 2021;44(Suppl 1):S1255150.
- American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S11*-*S124.
- Petrie JR,Guzik TJ,Touyz RM. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can Cardiol. 2018;34(5):575-584.
- Burgos-Morón E, Abad Jiménez Z, Martínez de Marañón A, et al. Relationship between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues Journal of Clinical Medicine. 2019; 8(9):1385.
- Cade WT. Diabetesrelated microvascular and macrovascular diseases in the physical therapy setting. Physer. 2008;88(11):1322-1335.

- American Diabetes Association. 6. Glycemic Targets standards of Medical Care in Diabetes 2021. Diabetes Care. 2021;44(Suppl 1):S73-S84.
- Invokana (canagliflozin) [prescribing information]. Titusville, NJ: Janssen Pharmaceuticals; July 2013
- Farxiga (dapagliflozin) [prescribing information]. Princeton, NJ: Bristol-Myers Squibb Company; August 2014
- Jardiance (empagliflozin) [prescribing information]. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals, Inc; December 2016.
- Steglatro (ertugliflozin) [prescribing information]. Whitehouse Station, NJ: Merck & Co., Inc.; December 2017
- Dutka M, Bobiński R, Ulman-Włodarz I, et al. Sodium glucose cotransporter 2 inhibitors: mechanisms of action in heart failure [published online ahead of print, 2020 Nov 4]. Heart Fail Rev. 2020;10.1007/s10741-020-10041-1.
- Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(7):644-657.
- Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019;380(24):2295-2306.
- Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-2128.
- Packer M, Anker SD, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020;383(15):1413-1424
- Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380(4):347-357.
- McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381(21):1995-2008.

- Cannon CP, Pratley RDagogo-Jack S, et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. Hegl J Med. 2020;383(15):1425-1435.
- LupsaBC, Inzucchi SE. Use of SGLT2 inhibitors in type 2 diabetes: weighing the risks and benef Diabetologia. 2018;61(10):2118-2125.
- Nadkarni GN, Ferrandino R, Chang A, et al. Acute Kidney Injury in Patients on SGLT2 Inhibitors: A Propensity atched Analysis. Diabetes Care. 2017;40(11):14791485.
- BeitelsheesAL, Leslie BR, Taylor SI. Sodiu@lucose Cotransporter 2 Inhibitors: A Case Study in Translational Research. Diabetes. 2019;68(6):1109-1120.
- Meena P. SGLT2 Inhibitorinduced Euglycemic Diabetic Ketoacidosis. Renal Fellow Network website. https://www.renalfellow.org/2020/09/08/sglt2 -inhibitor -induced-euglycemic-diabetic-ketoacidosis/. Updated September 8, 2020. Accessed April 10, 2021.
- Hinnen D. Glucagon-Like Peptide 1 Receptor Agonists for Type 2 Diabetes. Diabetes@pectr. 2017;30(3):202-210.
- Bydureon(exenatide) [prescribing information]. Wilmington, DE: AstraZeneca Pharmaceuticals LP; October 2017.
- Byetta (exenatide) [prescribing information]. San Diego, CA: Amylin Pharmaceuticals, Inc.; October 2009.
- Victoza (liraglutide) [prescribing information]. Bagsvaerd, Denmark: Novo Nordisk Inc.; August 2017.
- Trulicity (dulaglutide) [prescribing information]. Indianapolis, IN: Eli Lilly and Company; January 2017.
- Rybelsus(semaglutide) [prescribing information]. Bagsvaerd, Denmark: Novo Nordisk Inc;. September 2019.
- Ozempic (semaglutide) [prescribing information]. Bagsvaerd, Denmark: Novo Nordisk Inc.; December 2017.
- Adlyxin (lixisenatide) [prescribing information]. Bridgewater, NJ:Sanofi-aventis U.S. LLC; July 2016.

- Holman RR, Bethel MA, Mentz RJ, et al. Effects of Onde/eekly Exenatide on Cardiovascular Outcomes in Type Diabetes. NEngl J Med. 2017;377(13):1228-1239.
- Marso SP, Daniels GH, BrowrFrandsen K, et al. Liraglutide and Cardiovascular Outcomes in TypeDiabetes. NEngl J Med. 2016;375(4):311-322.
- Marso SP, Bain Scconsoli A, et al.Semaglutideand Cardiovascular Outcomes in Patients with Type Diabetes. NEngl J Med. 2016;375(19):1834-1844.
- Husain M, Birkenfeld AL, Donsmark M, et al. OralSemaglutideand Cardiovascular Outcomes in Patients with Type Diabetes. NEngl J Med. 2019;381(9):841-851.
- Gerstein HC, Colhoun HM,DagenaisGR, et al. Dulaglutide and cardiovascular outcomes in typ2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394(10193):121-130.
- Muskiet MHA, Tonneijck L, Huang Y, et aLixisenatide and renal outcomes in patients with type2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA andomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2018;6(11):859-869.
- PasquelFJ, Urrutia MA, Cardona S, et al. Liraglutide hospital discharge trial: A randomized controlled trial comparing the safety and efficacy of liraglutide versus insulin glargine for the management of patients with typ@ diabetes after hospital discharge [published online ahead of print2021 Feb 16]. DiabetesObesMetab.2021;10.1111/dom.14347.
- Yang T, Cutshall BT, Tatara A, Ruegger M. Combined Insulin and GLP1 Receptor Agonists: Simplifying Treatment or Adding Obstacles?. J Pharm Pract. 2019;32(4):447-449.
- Artigas CF, Stokes V, Tan GD, Theodorakis MJ. Insulin dose adjustments with add glucagon-like peptide-1 receptor (GLP-1R) agonists in clinical practice. ExperOpin Pharmacother.2015;16(10):1417-1421.
- Rosenstock J, Bajaj HSlanežA, et al. OnceWeekly Insulin for Type2 Diabetes without Previous Insulin Treatment. NEngl J Med.2020;383(22):2107-2116.

Thank you!

Jaclyn O'Connor, PharmD jaclyn.o'connor@atlantichealth.org