Beyond Diabetes: Examining Sodium-Glucose Cotransporter-2 (SGLT-2) Inhibitors in Heart Failure

A Presentation for HealthTrust Members April 8, 2021

Caitlyn Valerio, PharmD PGY-1 Pharmacy Resident Atlantic Health System Nicole Rudawsky, PharmD, Preceptor Nicole Campbell, PharmD, BCPS, Preceptor

Disclosures

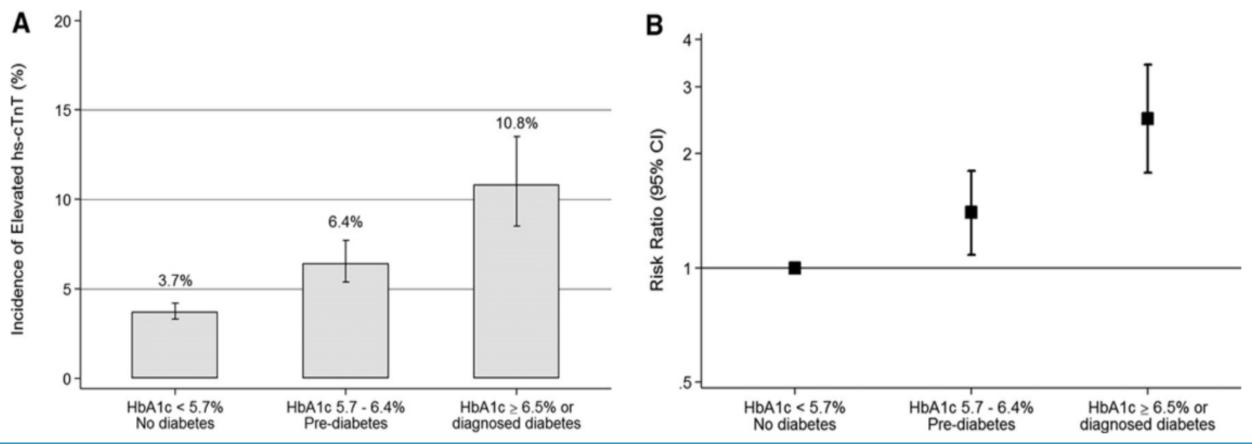
The presenter and her preceptors have no financial relationships with any commercial interests pertinent to this presentation.

This program may contain the mention of drugs or brands presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes and should not be perceived as an endorsement of any supplier, brand, or drug

Learning Objectives for Pharmacists & Nurses

Describe the proposed mechanism of action of sodiumglucose cotransporter 2 (SGLT-2) inhibitors in heart failure. Discuss the cardiovascular outcomes described in recent literature supporting the use of SGLT-2 inhibitors in heart failure.

Describe adverse events and safety considerations of SGLT-2 inhibitors.


Learning Objectives for Pharmacy Technicians

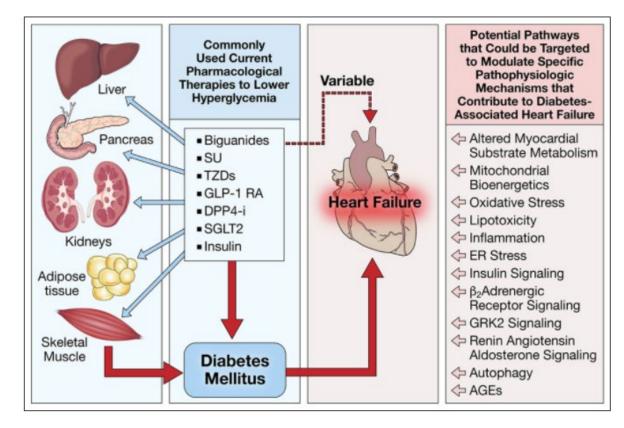
Identify common dosing schemes of SGLT-2 inhibitors.

List expanded FDA indications of SGLT-2 inhibitors. Describe adverse events and safety considerations of SGLT-2 inhibitors.

Epidemiology

- Patients with diabetes mellitus (DM) are at greater than twice the risk for developing heart failure (HF)
- DM increases the risk of HF up to 2-fold in men and 5-fold in women
- 44% of those hospitalized with HF have type 2 diabetes (T2DM)
- DM is associated with an increased risk of death and rehospitalization vs. nondiabetics with HF
- Higher hemoglobin A1c (HbA_{1c}) levels are associated with an increased incidence of HF

hs-CTnT: High-sensitivity assay for cardiac troponin T


Myocardial Damage and Diabetes

Subclinical myocardial damage increased linearly across the glycemic spectrum

 Correlates with increased risk for cardiovascular (CV) events, HF, or death

Diabetes & Heart Failure

- Diabetic cardiomyopathy causes increased structural/functional changes
- Tissue hypoxia → microvascular dysfunction and impaired myocardial perfusion reserve → accelerated left ventricular (LV) remodeling
- Antihyperglycemics target multiple mechanisms of cardiac injury to decrease the risk of HF

SGLT-2 Inhibitors

Food & Drug Administration (FDA) Approved SGLT-2 Inhibitors

Generic Name	Brand Name	FDA Approval Date	Available Doses
Canagliflozin	Invokana®	March 29, 2013	100 mg, 300 mg
Dapagliflozin	Farxiga®	January 18, 2014	5 mg, 10 mg
Empagliflozin	Jardiance®	August 01, 2014	10 mg, 25 mg
Ertugliflozin	Steglatro TM	December 20, 2017	5 mg, 15 mg

Dosing

Canagliflozin (Invokana®)

• 100-300 mg once daily

- eGFR 30-60: 100 mg once daily
- eGFR <30: Initiation not recommended
- ESRD, HD: Contraindicated

Dapagliflozin (Farxiga®)

- 5-10mg once daily
 - eGFR 30-45: Initiation not recommended
 - eGFR <30: Contraindicated
 - ESRD, HD: Contraindicated

Empagliflozin (Jardiance[®])

- 10-25 mg once daily
- eGFR 30-45: Initiation not recommended
- eGFR <30: Contraindicated
- ESRD, HD: Contraindicated

Ertugliflozin (SteglatroTM)

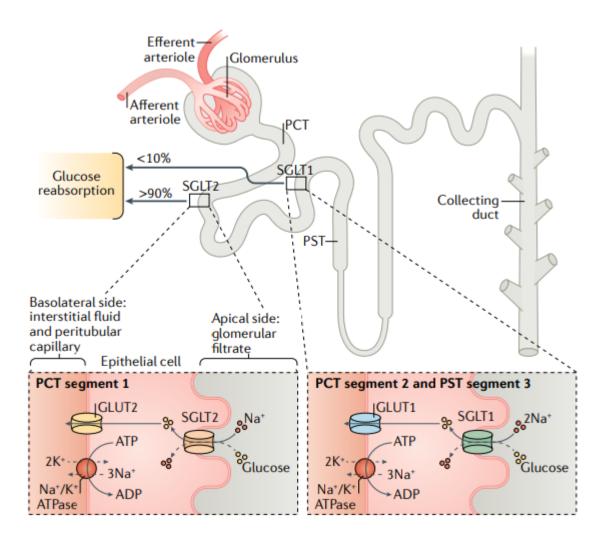
• 5-15 mg once daily

- eGFR 30-60: Initiation not recommended
- eGFR <30: Contraindicated
- ESRD, HD: Contraindicated

eGFR: Estimated glomerular filtration rate; ESRD: End stage renal disease; HD: Hemodialysis eGFR expressed in mL/minute/1.73 m²

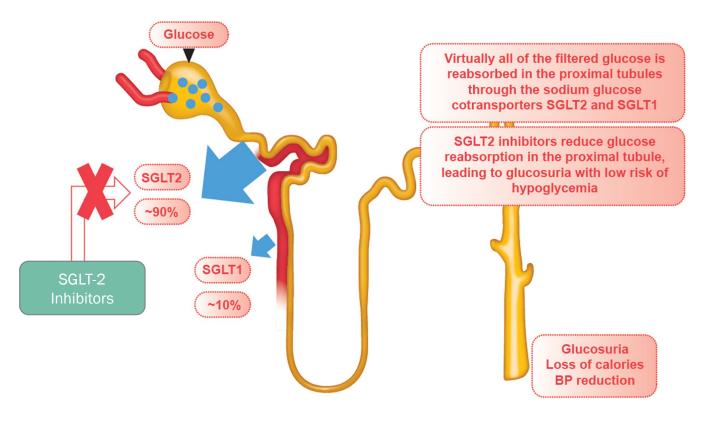
Sources: Invokana (canagliflozin) [prescribing information]. Titusville, NJ: Janssen Pharmaceuticals; July 2013 Farxiga (dapagliflozin) [prescribing information]. Princeton, NJ: Bristol-Myers Squibb Company; August 2014 Jardiance (empagliflozin) [prescribing information]. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals, Inc; December 2016 Steglatro (ertugliflozin) [prescribing information]. Whitehouse Station, NJ: Merck & Co., Inc.; December 2017

SGLT Proteins


- Six isoforms in humans
- Mediate sodium (Na⁺) and glucose transport across cell membranes
 - Cotransport driven by Na⁺/K⁺-ATPase to facilitate glucose uptake against intracellular gradient
 - Glucose exits into interstitial fluid and peritubular capillary through facilitative glucose transporter 1 (GLUT1 and glucose transporter 2 (GLUT2))

SGLT-1

- Small intestines and proximal tubules of kidneys
- Responsible for <<u>10%</u> of filtered glucose reabsorption


SGLT-2

- Proximal convoluted tubule (segment 1) of the kidneys
- Responsible for <u>90%</u> of filtered glucose reabsorption

Sources: Hsia DS, et al. *Curr Opin Endocrinol Diabetes Obes*. 2017;24(1):73-79. Poulsen SB, et al. *Curr Opin Nephrol Hypertens*. 2015;24(5):463-469.

Mechanism of SGLT-2 Inhibitors

- Normal renal threshold for reabsorption of glucose (RT_G) is equivalent to a glucose concentration of 180 mg/dL
 - RT_G is increased in T2DM \rightarrow SGLT-2 expression is upregulated \rightarrow maladaptive response

SGLT-2 Inhibitors

- Promote renal excretion of glucose
- Reduce ${\rm RT}_{\rm G}$ to as low as 40-120 mg/dL

Sources: Hsia DS, et al. *Curr Opin Endocrinol Diabetes Obes*. 2017;24(1):73-79. Butler J,et al. *Eur J Heart Fail*. 2017;19(11):1390-1400.

Administration & Storage

Medication	Oral Administration	Storage/Stability
Canagliflozin (Invokana®)	Before the first meal of the day with or without food	25°C (77°F) Excursions permitted between 15-30°C (59- 86°F)
Dapagliflozin (Farxiga®)	In the morning with or without food	20-25 °C (68-77 °F) Excursions permitted between 15-30 °C (59- 86 °F)
Empagliflozin (Jardiance®)	In the morning with or without food	25°C (77°F) Excursions permitted between 15-30°C (59- 86°F)
Ertugliflozin (Steglatro™)	In the morning without regards to meals	20-25 °C (68-77 °F) Excursions permitted between 15-30 °C (59- 86 °F). Protect from moisture.

Sources: Invokana (canagliflozin) [prescribing information]. Titusville, NJ: Janssen Pharmaceuticals; July 2013 Farxiga (dapagliflozin) [prescribing information]. Princeton, NJ: Bristol-Myers Squibb Company; August 2014 Jardiance (empagliflozin) [prescribing information]. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals, Inc; December 2016 Steglatro (ertugliflozin) [prescribing information]. Whitehouse Station, NJ: Merck & Co., Inc.; December 2017

Pharmacokinetics

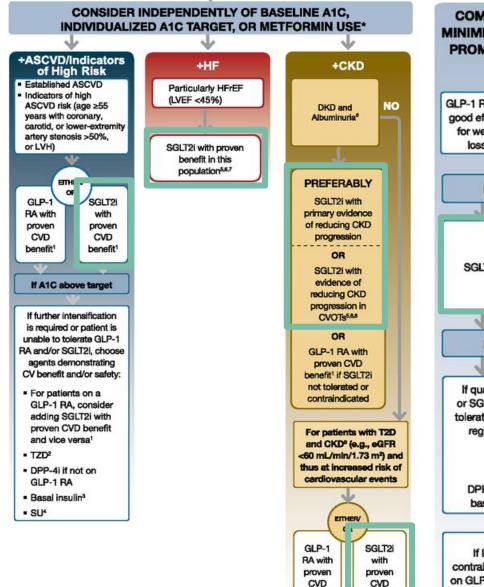
	Canagliflozin (Invokana®)	Dapagliflozin (Farxiga®)	Empagliflozin (Jardiance®)	Ertugliflozin (Steglatro™)
Absorption	Not affected by food	Not affected by food	Not affected by food	Not affected by food
V _d	83.5 L	118 L	73.8 L	85.5 L
Protein binding	99%	91%	86.2%	93.6%
Metabolism	O-glucuronidation by UGT1A9 and UGT2B4 to two inactive metabolites	Mediated by UGT1A9 to an inactive metabolite (dapagliflozin 3-0- glucuronide)	Glucuronidation by UGT2B7, UGT1A3, UGT1A8, and UGT1A9 to minor metabolites	UGT1A9 and UGT2B7- mediated O- glucuronidation to inactive metabolites
Half-life elimination	100mg: 10.6 hours 300mg: 13.1 hours	~12.9 hours	12.4 hours	16.6 hours
Time to peak	1-2 hours	2 hours	1.5 hours	1-2 hours
Excretion	Urine: ~33% Feces: 41.5%	Urine: 75% Feces: 21%	Urine: 54.4% Feces: 41.2%	Urine: 50.2% Feces: 40.9%

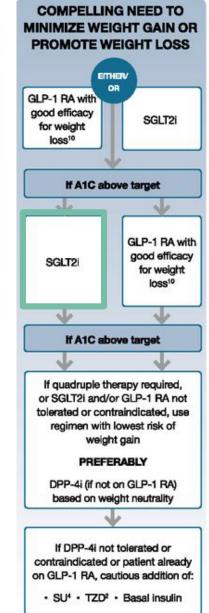
V_d:Volume of distribution; UGT: UDP-Glucuronosyltransferase

Sources: Invokana (canagliflozin) [prescribing information]. Titusville, NJ: Janssen Pharmaceuticals; July 2013 Farxiga (dapagliflozin) [prescribing information]. Princeton, NJ: Bristol-Myers Squibb Company; August 2014 Jardiance (empagliflozin) [prescribing information]. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals, Inc; December 2016 Steglatro (ertugliflozin) [prescribing information]. Whitehouse Station, NJ: Merck & Co., Inc.; December 2017

Assessment Question #1

A patient with heart failure with a reduced ejection fraction and type 2 diabetes is being prescribed dapagliflozin (Farxiga[®]). What would be the most appropriate dose and frequency?

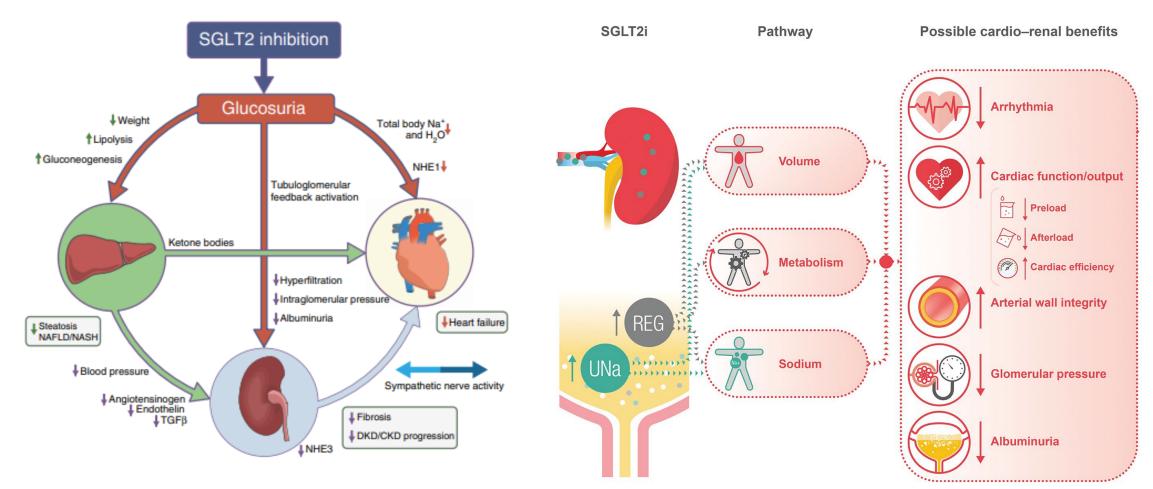

- a. 10mg by mouth once daily
- b. 100mg by mouth once daily
- c. 25mg by mouth once daily
- d. 300mg by mouth once daily


Assessment Question #1 Answer

A patient with heart failure with a reduced ejection fraction and type 2 diabetes is being prescribed dapagliflozin (Farxiga[®]). What would be the most appropriate dose and frequency?

a. 10mg by mouth once daily

- b. 100mg by mouth once daily
- c. 25mg by mouth once daily
- d. 300mg by mouth once daily


American Diabetes Association (ADA) 2021 Guidelines: Place in Therapy

- Recommended in T2DM with
 - Established atherosclerotic cardiovascular disease (ASCVD)
 - Diabetic kidney disease
 - Multiple ASCVD risk factors
 - Reduce the risk of major adverse cardiovascular events (MACE) and HF hospitalizations
- Dedicated decision pathway for HF

benefit¹

benefit^{1,7}

Proposed Mechanisms in Heart Failure

SGLT-2 inhibitors target multiple mechanisms on different organ systems

Sources: Wanner, C., et al. *Diabetologia* 61, 2134–2139 (2018). Butler J, et al. *Eur J Heart Fail*. 2017;19(11):1390-1400.

Diuresis & Natriuresis

HF is associated with fluid accumulation leading to peripheral/pulmonary edema

T2DM patients have elevated skin Na⁺ levels

• Predictor of LV hypertrophy in patients with chronic kidney disease (CKD)

SGLT-2 inhibitors: coupled decrease of Na⁺ and glucose reabsorption \rightarrow sustained osmotic diuresis \rightarrow glycosuria and natriuresis

↓ preload
 ↓ extracellular volume
 ↓ congestion without affecting blood volume

vascular wall stress plasma volume $\rightarrow \downarrow$ myocardial stretch Na⁺ content

Reduction in Blood Pressure

SLGT-2 inhibitors \downarrow blood pressure (BP) $\rightarrow \downarrow$ ventricular filling pressure $\rightarrow \downarrow$ cardiac afterload to improve ventricular arterial coupling and cardiac efficiency

Reduction of 4 mmHg in systolic blood pressure (SBP) and 2 mmHg in diastolic blood pressure (DBP)

Natriuresis ↓ Plasma volume ↓ Body massModulation of RAAS↓ Uric acid levels

Without concomitant tachycardia or symptoms of syncope in most cases

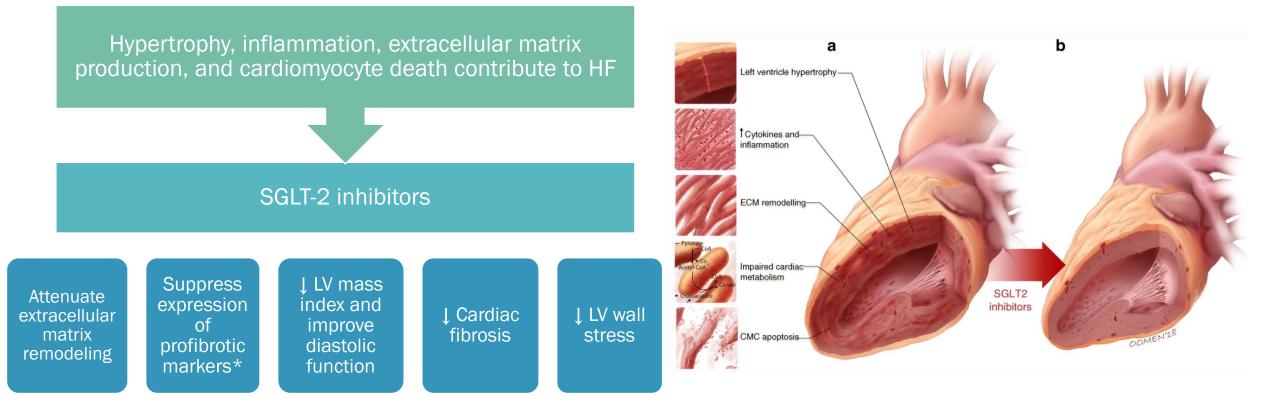
RAAS: Renin-angiotensin-aldosterone system

Sources: Cowie MR, et al. *Nat Rev Cardiol*. 2020;17(12):761-772. Baker WL, et al. *J Am Soc Hypertens* 2014;**8**:262–275.e9. Verma S, et al. *Am J Cardiol*. 2019;124 Suppl 1:S36-S44.

Decreased Arterial Stiffness

Arterial stiffness is associated with hypertension (HTN), obesity, and worsening HF

• Parameters of arterial stiffness (e.g. central pulse pressure) are associated with an increased risk of cardiovascular disease (CVD)


SGLT-2 inhibitors exert beneficial effects on central SBP and central pulse pressure

↓ afterload and ↑ arterial compliance and smooth muscle relaxation

 Due to negative Na⁺ balance caused by osmotic diuresis

Source: Lopaschuk GD, et al. JACC Basic Transl Sci. 2020;5(6):632-644.

Prevention of Cardiac Remodeling

*Protype I collagen, alpha-smooth muscle actin, matrix metalloproteinase, and growth factor

Sources: Verma S, et al. *Am J Cardiol*. 2019;124 Suppl 1:S36-S44. Verma S, et al. *Diabetologia*. 2018;61(10):2108-2117.

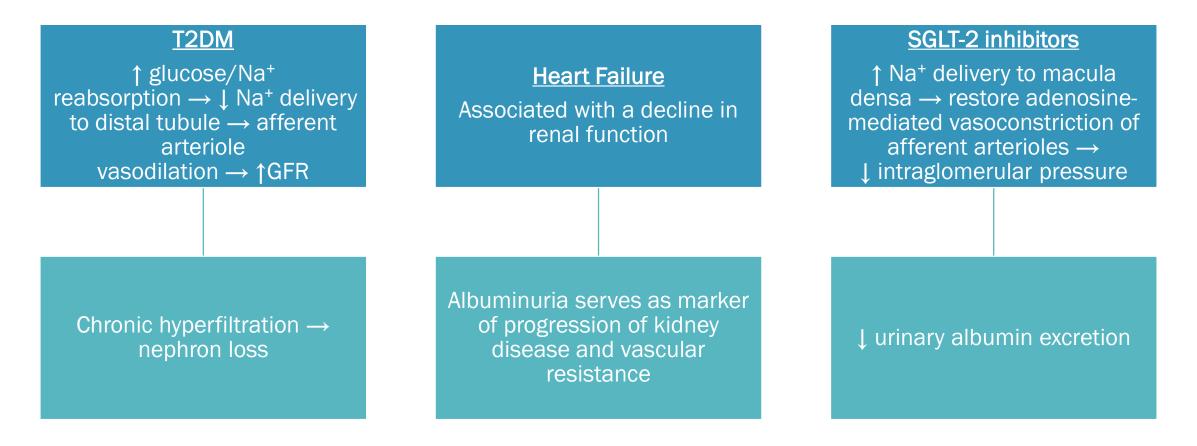
Improve Cardiac Efficiency

T2DM with a compromised heart: impaired fatty acid and glucose oxidation and impaired glucose uptake

Cardiac myocytes \uparrow glucose uptake beyond oxidative capacity \rightarrow impairment in cardiac function

Rely on ketone bodies and branched-chain amino acids as energy sources

SGLT-2 inhibitors \uparrow production of ketone bodies \rightarrow improve adenosine triphosphate (ATP) production from ketone body oxidation


Changes fuel supply from fatty acids and glucose to ketones

• Improve renal and myocardial metabolic efficiency

Additional energy source in order to sustain contractile function

Sources: Butler J, et al. *Eur J Heart Fail*. 2017;19(11):1390-1400. Lopaschuk GD, et al. *JACC Basic Transl Sci*. 2020;5(6):632-644. Verma S, et al. *Am J Cardiol*. 2019;124 Suppl 1:S36-S44.

Maintenance of Kidney Function

Sodium-Hydrogen Exchange Inhibition

Upregulated sodium-hydrogen exchanger (NHE) activity in HF

 Associated with ↑ cytosolic Na⁺ and calcium (Ca²⁺) in cardiomyocytes → myocyte injury SLGT-2 inhibitors inhibit NHE1 in the myocardium and NHE3 in the kidney

- ↓ Cardiomyocyte injury, fibrosis, remodeling, and hypertrophy
- ↓ Intracellular Ca²⁺, ↑mitochondrial Ca²⁺ concentration in myocytes
- Downregulation of NHE3 in kidney → restoration of Na⁺ homeostasis

Increase Hematocrit & Erythropoietin

An increase in hematocrit (Hct), hemoglobin (Hgb), or albumin levels is associated with a reduced risk of CV death

SLGT-2 inhibitors \downarrow plasma volume \rightarrow hemoconcentration

 ↓ metabolic stress in proximal tubule →
 ↓ tubulointerstitial hypoxia → may account for stimulation of erythropoiesis \uparrow erythropoietin (EPO) \rightarrow improves cardiomyocyte mitochondrial function and enhances oxygen delivery to myocardial tissue

Sources: Lopaschuk GD, et al. *JACC Basic Transl Sci*. 2020;5(6):632-644. Butler J, et al. *Eur J Heart Fail*. 2017;19(11):1390-1400. Verma S, et al. *Am J Cardiol*. 2019;124 Suppl 1:S36-S44.

Reduction in Body Mass

T2DM: proinflammatory condition due to adipokine production

 ↑ Adipokine leptin → Na⁺
 retention + inflammation in the kidney and heart

• Epicardial fat cells produce molecules that contribute to coronary artery disease (CAD) SGLT-2 inhibitors↓ adipose tissue to limit leptin secretion

> • ↓ Epicardial adipose tissue volume

↓ Visceral and subcutaneous adipose tissue mass

Loss of 200-250 kcal/day in urine

Other Proposed Mechanisms

Autophagy and lysosomal degradation	Prevention of ischemia/reperfusion injury	Reduction in uric acid
Prevention of increase in N- terminal pro b-type natriuretic peptide (NT-pro-BNP)	Reduction in inflammation	Increase vascular repair

Sources: Cowie MR, et al. *Nat Rev Cardiol*. 2020;17(12):761-772. Verma S, et al. *Am J Cardiol*. 2019;124 Suppl 1:S36-S44. Lopaschuk GD, et al. *JACC Basic Transl Sci*. 2020;5(6):632-644.

Assessment Question #2

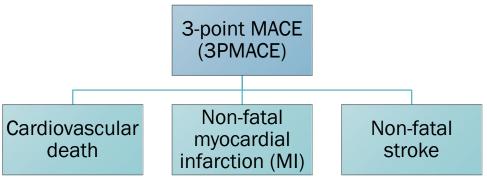
Which of the following is **NOT** a proposed mechanism of action employed by SGLT-2 inhibitors in order to produce cardiovascular benefit?

- a. Blood pressure lowering
- b. Diuresis/Natriuresis
- c. Inhibition of gastric emptying
- d. Reduction of body mass

Assessment Question #2 Answer

Which of the following is **NOT** a proposed mechanism of action employed by SGLT-2 inhibitors in order to produce cardiovascular benefit?

- a. Blood pressure lowering
- b. Diuresis/Natriuresis
- c. Inhibition of gastric emptying
- d. Reduction of body mass


Review of the Literature

Timeline of Cardiovascular Outcomes Trials

EMPA-REG OUT	COME			
September 17, 2015	CANVAS June 12, 2017	DECLARE TIMI 58	3	
Empagliflozin		November 10, 2018	VERTIS CV	
vs. placebo	Canagliflozin vs.	Dapagliflozin	September 23, 2020	
	placebo	VS.	Ertugliflozin	
		placebo	vs. placebo	

Trials on Cardiovascular Efficacy

- Phase 3, double-blind, placebo-controlled randomized control trials (RCTs) to assess cardiovascular safety
- Designed to demonstrate non-inferiority for MACE vs. standard antihyperglycemic therapy

• Superiority was secondary outcome

EMPA-REG OUTCOME

Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes		
Arms	Empagliflozin 10 mg or 25 mg daily vs. placebo	
Population (n)	7,020 patients with T2DM and established CVD (99% at baseline)	
Median Observation Time	3.1 years	
Primary Outcome	 3PMACE (HR 0.86, 95% CI 0.74–0.99); 14% reduction CV death (HR 0.62, 95% CI 0.49–0.77) Non-fatal MI (HR 0.87, 95% CI 0.70–1.09) Non-fatal stroke (HR 1.18, 95% CI 0.89–1.56) 	
Secondary Outcomes	 All cause mortality (HR 0.68, 95% CI 0.57-0.82); 32% reduction Hospitalization for HF (HR 0.65, 95% CI 0.50–0.85); 35% reduction 	

CANVAS

Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes		
Arms	Canagliflozin 100 mg or 300 mg daily vs. placebo	
Population (n)	10,142 patients with T2DM and established CVD (66% at baseline) or $\ge\!\!2$ CV risk factors	
Median Observation Time	3.6 years	
Primary Outcome	 3PMACE (HR 0.86, 95% Cl 0.75-0.97); 14% reduction CV death (HR 0.87, 95% Cl 0.72-1.06) Non-fatal MI (HR 0.89, 95% Cl 0.73-1.09) Non-fatal stroke (HR 0.87, 95% Cl 0.69-1.09) 	
Secondary Outcomes	 Hospitalization for HF (HR 0.67, 95% CI 0.52–0.87); 33% reduction CV death or hospitalization for HF (HR 0.78, 95% CI 0.67-0.91); 22% reduction Progression of albuminuria (HR 0.73, 95% CI 0.67-0.79); 27% reduction Risk of amputations with canagliflozin (HR 1.97, 95% CI 1.41-2.75) 	

DECLARE-TIMI 58

Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes			
Arms	Dapagliflozin 10 mg daily vs. placebo		
Population (n)	17,160 patients with T2DM and established CVD (41% at baseline) or CV risk factors		
Median Observation Time	4.2 years		
Primary Outcome	 3PMACE (HR 0.93, 95% CI 0.84–1.03) CV death or hospitalization for HF (HR 0.83, 95% CI 0.73-0.95); 17% reduction CV death (HR 0.98, 95% CI 0.82-1.17) Non-fatal MI (HR 0.89, 95% CI 0.77-1.01) Non-fatal stroke (HR 1.01, 95% CI 0.84-1.21) 		
 Hospitalization for HF (HR 0.73, 95% CI 0.61-0.88); 27% reduction Renal composite outcome (sustained decrease of ≥40 in eGFR to < 6 ml/min/1.73m², new ESRD, or death from renal/CV cause) (HR 0.76, CI 0.67-0.87); 24% reduction 			

VERTIS CV

Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes			
Arms	Ertugliflozin 5mg or 15mg once daily vs. placebo		
Population (n)	8,246 patients with T2DM and established vascular complications		
Median Observation Time	3.5 years		
Primary Outcome 3PMACE (HR 0.97, 95% CI 0.85-1.11) • CV death (HR 0.92, 95% CI 0.77-1.11) • Non-fatal MI (HR 1.04, 95% CI 0.86-1.27) • Non-fatal stroke (HR 1.00, 95% CI 0.76-1.32)			
Secondary Outcomes	 Death from CV causes or hospitalization for HF (HR 0.88, 95% CI 0.75-1.03) Death from renal causes, renal replacement therapy, or doubling of serum creatinine (SCr) (HR 0.81, 95% CI 0.63-1.04) 		

Summary of Cardiovascular Outcome Trials

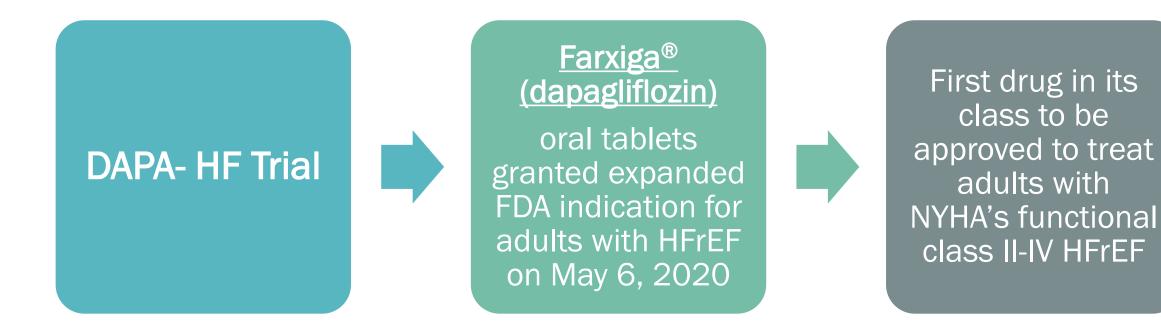
	EMPA-REG OUTCOME	CANVAS	DECLARE- TIMI 58	VERTIS CV
Agent Studied	Empagliflozin	Canagliflozin	Dapagliflozin	Ertugliflozin
Population	T2DM + established CVD	T2DM + established CVD or ≥ 2 CV risk factors	T2DM + established CVD or CV risk factors	T2DM + atherosclerotic CVD
Mean HgbA _{1c} (%)	8.1	8.2	8.3	8.2
History of HF (%)	10.1	14.4	10.0	23.7
Key findings	↓MACE by 14% ↓HF hospitalizations by 35%	↓MACE by 14% ↓HF hospitalizations by 33%	↓CV death and HF hospitalizations by 17%	Noninferior with respect to MACE
	↓Death from any cause by 32%	↑ Risk of amputations	↓HF hospitalizations by 27%	

Sources: Cowie MR, et al. *Nat Rev Cardiol*. 2020;17(12):761-772. McGuire DK, et al. *JAMA Cardiol*. 2021;6(2):148-158.

SGLT-2 Inhibitors in Heart Failure

DAPA-HF

September 19, 2019 Dapagliflozin (Farxiga®) vs. placebo in patients with HFrEF


EMPEROR-Reduced

August 28, 2020 Empagliflozin (Jardiance®) vs. placebo in patients with HFrEF

DAPA-HF

Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction			
Arms	Dapagliflozin 10mg once daily vs. placebo (in addition to optimal medical therapy)		
Population (n)	 4,744 patients with heart failure with reduced ejection fraction (HFrEF) in New York Heart Association (NYHA) class II, III or IV 45% with T2DM, 55% without T2DM 		
Median Observation Time	1.5 years		
Primary Outcome	 Composite of worsening heart failure (unplanned hospitalization or urgent visit with intravenous therapy for HF) or death from CV causes (HR 0.74, 95% CI 0.65-0.98); 26% reduction CV death (HR 0.82, 95% CI 0.69-0.98) Hospitalization or urgent visit for HF (HR 0.70, 95% CI 0.59-0.83) 		
Secondary Outcomes	 CV death or hospitalizations for HF (HHF) (HR 0.75, 95% CI 0.65–0.85); 25% reduction 		

Expanded FDA Indication

EMPEROR-Reduced

Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure

Arms	Empagliflozin 10mg once daily vs. placebo (in addition to optimal medical therapy		
Population (n)	3,730 patients with HFrEF (EF < 40%), New York Heart Association (NYHA) class II, III or IV • 49.8% with T2DM, 50.2% without T2DM		
Median Observation Time	1.3 years		
Primary Outcome	 CV death or HHF (HR 0.75, 95% Cl 0.65-0.86); 25% reduction CV death (HR 0.92, 95% Cl 0.75-1.12) Hospitalization for HF (HR 0.69, 95% Cl 0.59-0.81) 		
 Total number of HHF (HR 0.70, 95% Cl 0.58 to 0.85) Mean slope of change in eGFR per year (Absolute Difference 1.73 1.10-2.37) 			

DAPA-HF & EMPEROR-Reduced

	DAPA-HF	EMPEROR- Reduced	
Agent Studied	Dapagliflozin	Empagliflozin	
Inclusion Criteria	 LVEF ≤40% + NT-proBNP ≥600 (without atrial fibrillation (AF)) or ≥900 (with AF) LVEF ≤40% + HHF in past 12 months and NT-proBNP ≥400 (without AF) or ≥900 (with AF) eGFR ≥30 	 LVEF ≤30% and NT-proBNP ≥600 without AF and ≥1200 with AF LVEF 31%-35% and NT-proBNP ≥1000 (without AF) and ≥2000 (with AF) LVEF 36%-40% and NT-proBNP ≥2500 (without AF) and ≥5000 (with AF) LVEF ≤40% and HHF in past 12 months and NT-proBNP ≥600 (without AF) and ≥1200 (with AF) eGFR ≥20 	
CV death or HHF	0.75 (0.65–0.85) P<0.001: ↓ 25%	0.75 (0.65–0.85) P<0.001:↓25%	
HHF	0.70 (0.59–0.83): ↓ 30%	0.69 (0.59–0.81): ↓ 31%	
Primary outcome	↓ Risk of worsening HF or CV death with or without DM	\downarrow CV death or hospitalization for HF with or without DM	
NT-proBNP expressed in pg/mL			

eGFR expressed in mL/minute/1.73 m²

Sources: McMurray JJV, et al. *N Engl J Med*. 2019;381(21):1995-2008. Packer M, et al. *N Engl J Med*. 2020;383(15):1413-1424. Zannad F, et al. *Lancet*. 2020;396(10254):819-829.

Ongoing Trials

DELIVER

(National clinical trial identifier: 03619213)

Dapagliflozin Evaluation to Improve the LIVEs of Patients With PReserved Ejection Fraction Heart Failure)

Population:

Heart failure with preserved ejection fracture (HFpEF) Primary outcome:

Time to first occurrence of any components of composite (CV death, hospitalization for HF, urgent HF visit)

EMPEROR-Preserved

(National clinical trial identifier: 03057951)

EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Preserved Ejection Fraction

Population: Chronic HFpEF Primary outcome:

Time to first event of CV death or hospitalization for HF

Source: Cowie MR, et al. Nat Rev Cardiol. 2020;17(12):761-772.

Assessment Question #3

Which SGLT-2 inhibitor is FDA approved in the US for heart failure?

- a. Canagliflozin
- b. Empagliflozin
- c. Dapagliflozin
- d. Ertugliflozin

Assessment Question #3 Answer

Which SGLT-2 inhibitor is FDA approved in the US for heart failure?

- a. Canagliflozin
- b. Empagliflozin
- c. Dapagliflozin
- d. Ertugliflozin

Assessment Question #4

Which primary outcome did both EMPEROR-Reduced (empagliflozin) and DAPA-HF (dapagliflozin) share?

- a. SGLT-2 inhibition reduced combined risk of cardiovascular death and hospitalization for heart failure in those with HFrEF with or without diabetes.
- b. SGLT-2 inhibition was non-inferior to placebo with respect to a composite of MACE defined as death, myocardial infarction, or ischemic stroke.
- c. SGLT-2 inhibition was associated with a lower risk of a composite of end-stage kidney disease (dialysis, transplantation, or sustained estimated GFR of 15 ml/min/1.73 m²)

Assessment Question #4 Answer

Which primary outcome did both EMPEROR-Reduced (empagliflozin) and DAPA-HF (dapagliflozin) share?

- a. SGLT-2 inhibition reduced combined risk of cardiovascular death and hospitalization for heart failure in those with HFrEF with or without diabetes
- b. SGLT-2 inhibition was non-inferior to placebo with respect to a composite of MACE defined as death, myocardial infarction, or ischemic stroke
- c. SGLT-2 inhibition was associated with a lower risk of a composite of end-stage kidney disease (dialysis, transplantation, or sustained estimated GFR of 15 ml/min/1.73 m²)

Adverse Events & Safety Considerations

Genital Infections

Mechanism

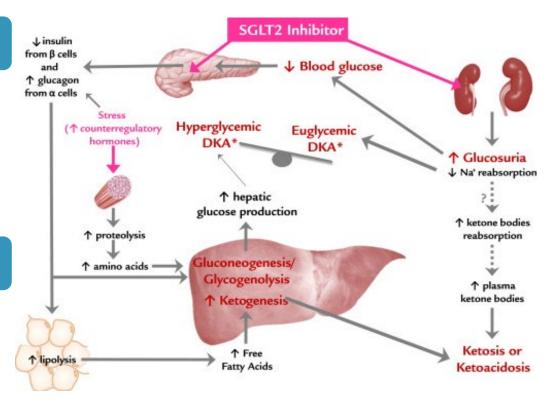
• Increase glucose load in urinary tract leads to fungal growth

Prevalence

- SGLT-2 inhibitors significantly associated with:
- 5-fold increase in risk of genital mycotic infections (OR 5.06 [95% CI 3.44, 7.45])
- Small increase in urinary tract infections (UTIs) (OR 5.06 [95% CI 3.44, 7.45])

Prevention/Management

- Maintain perineal hygiene
- Treatment with antifungal therapy


Euglycemic Ketoacidosis

Mechanism

- \downarrow glucose leads to \downarrow insulin \rightarrow compensatory \uparrow in glucagon
- Shift in hormones \rightarrow released inhibition of gluconeogenesis in liver and endogenous glucose production
 - Lower insulin-to- glucagon ratio → stimulation of lipolysis → augment FFA delivery to liver → stimulation of ketogenesis

Presentation

- Nausea, vomiting, malaise
- Euglycemia (plasma glucose <250 mg/dL) due to glycosuria
- Positive serum/urine ketones
- Anion-gap metabolic acidosis

Euglycemic Ketoacidosis cont.

Prevalence

- Population-based cohort study: SGLT-2 inhibitors were associated with almost 3-fold increased risk of DKA vs. dipeptidyl peptidase 4 (DPP-4) inhibitors (HR 2.85, 95% CI 1.99-4.08)
 - Canagliflozin associated with highest risk

Prevention

- Early recognition by both patient and clinician despite absence of hyperglycemia
- If patients have symptoms of nausea, vomiting, or malaise, serum ketones should be obtained and SGLT-2 inhibitors should be discontinued if acidosis present
- Stop SGLT-2 prior to surgery
 - Canagliflozin, dapagliflozin, and empagliflozin should be stopped \geq 3 days prior to surgery; ertugliflozin should be stopped \geq 4 days prior to surgery

Hypotension/Volume Depletion

Mechanism

- Osmotic divides \rightarrow volume depletion (350-450 ml/day)
- Accompanied by increased thirst, urinary frequency, and orthostatic hypotension

Risk Factors

- Age > 75 years old
- GFR < 60 mL/min/1.73m²
- Concomitant use of other antihypertensive medications

Prevention

• Use with caution in patients taking other antihypertensive medications (loop diuretics, angiotensin-converting enzyme inhibitors, or angiotensin receptor blockers)

Acute Kidney Injury

Mechanism

- Proximal tubular natriuresis on tubuloglomerular feedback \rightarrow reversible intrarenal hemodynamics
- Acute decline in eGFR by 3-5 ml/min/1.73 m² prior to occurrence of renoprotective effects

Prevalence

• Post-marketing reports of acute kidney injury (AKI) with canagliflozin and dapagliflozin; however later findings suggest there is no evidence for increased AKI

Risk Factors

- Volume depletion
- Hypotension
- Taking other medications that affect kidneys

Prevention

• Dose adjustments and frequent monitoring in patients with impaired renal function (eGFR 45-60ml/min)

Limb Injury

Mechanism

• Hypothesized that \downarrow plasma volume $\rightarrow \downarrow$ perfusion in lower limbs

Prevalence

- Two- fold increased risk of lower limb amputations with canagliflozin vs. placebo
- Incidence of 5.9 per 1000 patient years for canagliflozin vs. 2.8 per 1000 patient years for placebo

Risk Factors

- Neuropathy
- Foot deformities or history of ulceration
- Vascular disease

Prevention

- Should be avoided in those at high risk for foot amputation
- Frequent foot exams

Bone Fractures

Mechanism

- Disordered calcium and phosphate homeostasis → ↑ parathyroid hormone (PTH) → ↓ 1,25-dihydroxy vitamin D levels → adversely impact bone density and metabolism
- Orthostatic hypotension leading to postural dizziness \rightarrow falls

Prevalence

- Canagliflozin (OR 1.15; 95% CI 0.71-1.88), dapagliflozin (OR 0.68; 95% CI 0.37-1.25) and empagliflozin (OR 0.93; 95% CI 0.74-1.18) vs. placebo
 - Not significantly associated with an increased risk of fracture

Prevention

- Education on the prevention of falls
- Assessment of vertebral fractures and bone mineral density (BMD) measurements should be considered in patients with histories of fractures

Source: Tang HL, et al. *Diabetes Obes Metab.* 2016;18(12):1199-1206 Lupsa, B.C., et al. *Diabetologia* 61, 2118–2125 (2018). Ye Y, et al. *Front Pharmacol.* 2019;9:1517.

Assessment Question #5

Which of the following is **NOT** an adverse event associated with SGLT-2 inhibitors?

- a. Euglycemic diabetic ketoacidosis
- b. Genitourinary fungal infections
- c. Pancreatitis
- d. Limb injury (toe, foot, lower limb amputations)

Assessment Question #5 Answer

Which of the following is **NOT** an adverse event associated with SGLT-2 inhibitors?

- a. Euglycemic diabetic ketoacidosis
- b. Genitourinary fungal infections
- c. Pancreatitis
- d. Limb injury (toe, foot, lower limb amputations)

Conclusion

SGLT-2 inhibitors play a vital role in the reduction of ASCVD in patients with T2DM

There are multiple proposed mechanisms aside from glycemic control that may be responsible for the cardiorenal benefits of SGLT-2 inhibitors

Emerging literature shows that SGLT-2 inhibitors may have CV benefits in patients with and without T2DM

Adverse events should be carefully monitored in patients taking SGLT-2 inhibitors

- 1. Kenny HC, Abel ED. Heart Failure in Type 2 Diabetes Mellitus. *Circ Res.* 2019;124(1):121-141. doi:10.1161/CIRCRESAHA.118.311371
- 2. Selvin E, Lazo M, Chen Y, et al. Diabetes mellitus, prediabetes, and incidence of subclinical myocardial damage. *Circulation*. 2014;130(16):1374-1382. doi:10.1161/CIRCULATIONAHA.114.010815
- 3. Hsia DS, Grove O, Cefalu WT. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. *Curr Opin Endocrinol Diabetes Obes*. 2017;24(1):73-79. doi:10.1097/MED.00000000000311
- 4. Invokana (canagliflozin) [prescribing information]. Titusville, NJ: Janssen Pharmaceuticals; July 2013
- 5. Farxiga (dapagliflozin) [prescribing information]. Princeton, NJ: Bristol-Myers Squibb Company; August 2014
- 6. Jardiance (empagliflozin) [prescribing information]. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals, Inc; December 2016
- 7. Steglatro (ertugliflozin) [prescribing information]. Whitehouse Station, NJ: Merck & Co., Inc.; December 2017
- 8. Poulsen SB, Fenton RA, Rieg T. Sodium-glucose cotransport. *Curr Opin Nephrol Hypertens*. 2015;24(5):463-469. doi:10.1097/MNH.00000000000152
- 9. Butler J, Hamo CE, Filippatos G, et al. The potential role and rationale for treatment of heart failure with sodium-glucose co-transporter 2 inhibitors. *Eur J Heart Fail*. 2017;19(11):1390-1400. doi:10.1002/ejhf.933
- American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S111-S124. doi:10.2337/dc21-S009
- 11. Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. *Nat Rev Cardiol*. 2020;17(12):761-772. doi:10.1038/s41569-020-0406-8

References

- 12. Verma S. Potential Mechanisms of Sodium-Glucose Co-Transporter 2 Inhibitor-Related Cardiovascular Benefits. *Am J Cardiol*. 2019;124 Suppl 1:S36-S44. doi:10.1016/j.amjcard.2019.10.028
- 13. Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB. Effects of sodium–glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. *J Am Soc Hypertens* 2014;**8**:262–275.e9.
- 14. Lopaschuk GD, Verma S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. *JACC Basic Transl Sci.* 2020;5(6):632-644. Published 2020 Jun 22. doi:10.1016/j.jacbts.2020.02.004
- 15. Butler J, Hamo CE, Filippatos G, et al. The potential role and rationale for treatment of heart failure with sodium-glucose co-transporter 2 inhibitors. *Eur J Heart Fail*. 2017;19(11):1390-1400. doi:10.1002/ejhf.933
- Wanner, C., Marx, N. SGLT2 inhibitors: the future for treatment of type 2 diabetes mellitus and other chronic diseases. *Diabetologia* 61, 2134–2139 (2018). <u>https://doi.org/10.1007/s00125-018-4678-z</u>
- 17. McGuire DK, Shih WJ, Cosentino F, et al. Association of SGLT2 Inhibitors With Cardiovascular and Kidney Outcomes in Patients With Type 2 Diabetes: A Metaanalysis. *JAMA Cardiol*. 2021;6(2):148-158. doi:10.1001/jamacardio.2020.4511
- Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI. Sodium Glucose Cotransporter-2 Inhibition in Heart Failure: Potential Mechanisms, Clinical Applications, and Summary of Clinical Trials. *Circulation*. 2017;136(17):1643-1658. doi:10.1161/CIRCULATIONAHA.117.030012
- 19. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. *N Engl J Med*. 2015;373(22):2117-2128. doi:10.1056/NEJMoa1504720

References

20.Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. *N Engl J Med*. 2017;377(7):644-657. doi:10.1056/NEJMoa1611925

- 21. Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. *N Engl J Med.* 2019;380(4):347-357. doi:10.1056/NEJMoa1812389
- 22.Cannon CP, Pratley R, Dagogo-Jack S, et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. *N Engl J Med*. 2020;383(15):1425-1435. doi:10.1056/NEJMoa2004967
- 23.McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. *N Engl J Med.* 2019;381(21):1995-2008. doi:10.1056/NEJMoa1911303
- 24. FDA approves new treatment for a type of heart failure; 2020. Available at: <u>https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-type-heart-failure</u>. Accessed March 13, 2021.
- 25.Packer M, Anker SD, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. *N Engl J Med*. 2020;383(15):1413-1424. doi:10.1056/NEJMoa2022190
- 26.Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. *Lancet*. 2020;396(10254):819-829. doi:10.1016/S0140-6736(20)31824-9
- 27.Lupsa, B.C., Inzucchi, S.E. Use of SGLT2 inhibitors in type 2 diabetes: weighing the risks and benefits. *Diabetologia* 61, 2118–2125 (2018). <u>https://doi.org/10.1007/s00125-018-4663-6</u>
- 28. Douros A, Lix LM, Fralick M, et al. Sodium-Glucose Cotransporter-2 Inhibitors and the Risk for Diabetic Ketoacidosis : A Multicenter Cohort Study. *Ann Intern Med*. 2020;173(6):417-425. doi:10.7326/M20-0289
- 29. Tang HL, Li DD, Zhang JJ, et al. Lack of evidence for a harmful effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. *Diabetes Obes Metab*. 2016;18(12):1199-1206. doi:10.1111/dom.12742
- 30.Ye Y, Zhao C, Liang J, Yang Y, Yu M, Qu X. Effect of Sodium-Glucose Co-transporter 2 Inhibitors on Bone Metabolism and Fracture Risk. *Front Pharmacol*. 2019;9:1517. Published 2019 Jan 8. doi:10.3389/fphar.2018.01517

References

Thank You!

Caitlyn Valerio, PharmD PGY-1 Pharmacy Resident Caitlyn.Valerio@atlantichealth.org