Management of Chemotherapy-Induced Cardiotoxicities

A presentation for HealthTrust Members

March 2, 2021

Dwiti Patel, PharmD

Drug Information Resident Rutgers University, Ernest Mario School of Pharmacy Robert Wood Johnson University Hospital

> Joy Park, PharmD, BCOP Preceptor

Speaker Disclosures

 The presenter and their preceptor have no financial relationships with any commercial interests pertinent to this presentation.

+ This program may contain the mention of drugs, brands or suppliers presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes and should not be perceived as an endorsement of any particular drug, brand or supplier.

Learning Objectives

LIST

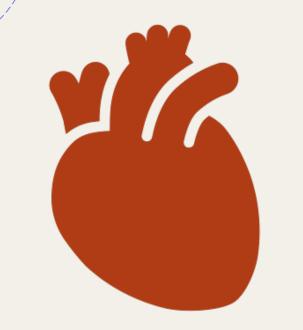
the common cardiotoxicities observed with chemotherapy agents

IDENTIFY

chemotherapy agents that can cause cardiotoxicities

INDICATE

pharmacotherapy options for the management of the cardiotoxicities


What is Cardio-Oncology?

Correlation is Causation?

Heart disease and cancer are the top 2 leading causes of death in the United States

Common risk factors between the two result in comorbidity Advances in cancer therapies can result in cardiovascular complications

Cardio-Oncology

 New discipline within cardiovascular medicine

- + Cardiac dysfunction can:
 - + Interfere with the efficacy of treatment
 - + Decrease quality of life
 - + Impact the actual survival of the patient with cancer
- + Toxicity can range from asymptomatic and transient to more clinically significant and long-lasting

Risk Factors

High-dose anthracycline use

Female sex

>65 years old or <18 years old

Renal failure

Radiotherapy involving the heart

Pre-existing cardiovascular disease or risk factors

Cardiotoxicities

-Heart Failure		Ischemia		Hyper	tension
Pericardial Diseases		Thromboembolism			Tc ngation
Arrhythmia		nmias	Imm Check Inhibitor- Myoca	point Related	

Heart Failure (HF)

Etiology

Chemotherapy-induced cardiomyopathy has been described in 1% to 5% of cancer survivors

- One of the worst survivals among cardiomyopathies
- Early diagnosis and timely intervention

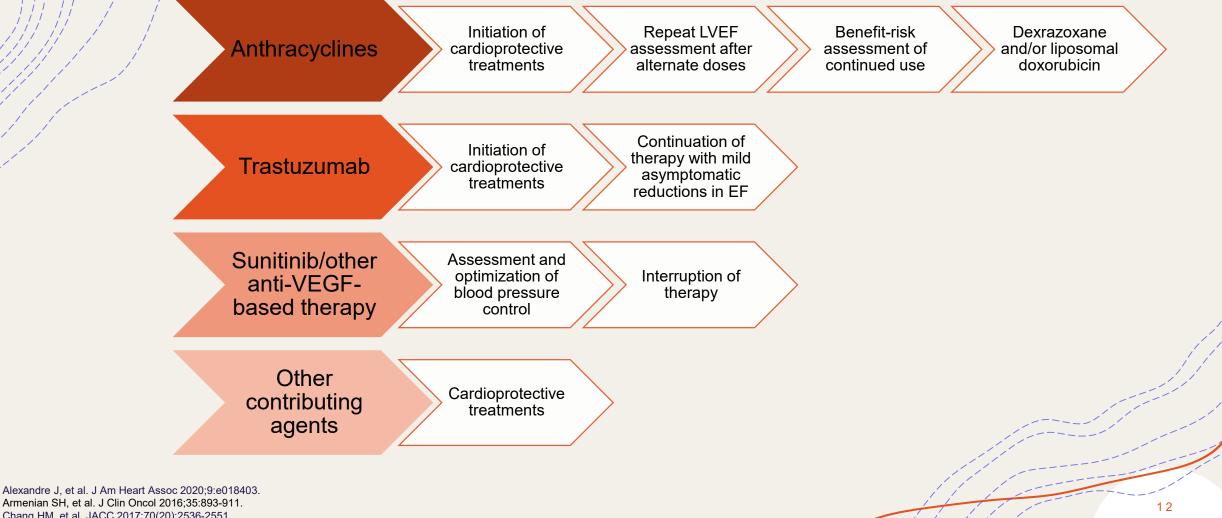
Drug-associated cardiotoxicity is defined as 1 or more of the following:

- Cardiomyopathy characterized by a decrease in ejection fraction (EF) globally or due to regional changes in interventricular septum contraction
- Symptoms associated with HF
- Signs associated with HF, such as S3 gallop, tachycardia, or both
- Decline in initial EF of at least 5% to <55% with signs and symptoms of HF or asymptomatic decrease in EF of at least 10% to <55%

Contributing Agents

Anthracyclines	
doxorubicin	

Alkylating Agents cyclophosphamide ifosfamide HER-2 Targeted Therapies *trastuzumab*


VEGF Inhibitors *bevacizumab*

Small Molecule TKIs *sunitinib sorafenib*

Proteasome Inhibitors *carfilzomib*

Alexandre J, et al. J Am Heart Assoc 2020;9:e018403. Armenian SH, et al. J Clin Oncol 2016;35:893-911. Chang HM, et al. JACC 2017;70(20):2536-2551. Curigliano G, et al. Ann Oncol 2020;31(2):171-190.

Management

Chang HM, et al. JACC 2017;70(20):2536-2551. Curigliano G, et al. Ann Oncol 2020;31(2):171-190.

Dexrazoxane (Zinecard®)

 Indication	Off-Label Uses	Dosage/ Administration	Warnings/ Precautions
Reduce the incidence and severity of cardiomyopathy associated with doxorubicin administration in women with	Anthracycline- induced cardiotoxicity	Recommended dosage ratio of dexrazoxane to doxorubicin is 10:1	Acute myeloid leukemia (AML)
metastatic breast cancer who have received a cumulative doxorubicin dose of 300 mg/m ² and who will continue to receive doxorubicin therapy to maintain tumor control	Treatment of other cancers	Do not administer doxorubicin before dexrazoxane, use with chemotherapy initiation, use with non-anthracycline chemotherapy regimens	Myelodysplastic syndrome (MDS)

Ischemia

+

Etiology

Cancer treatment

- Coronary artery disease
- Acute coronary syndrome

Cancer

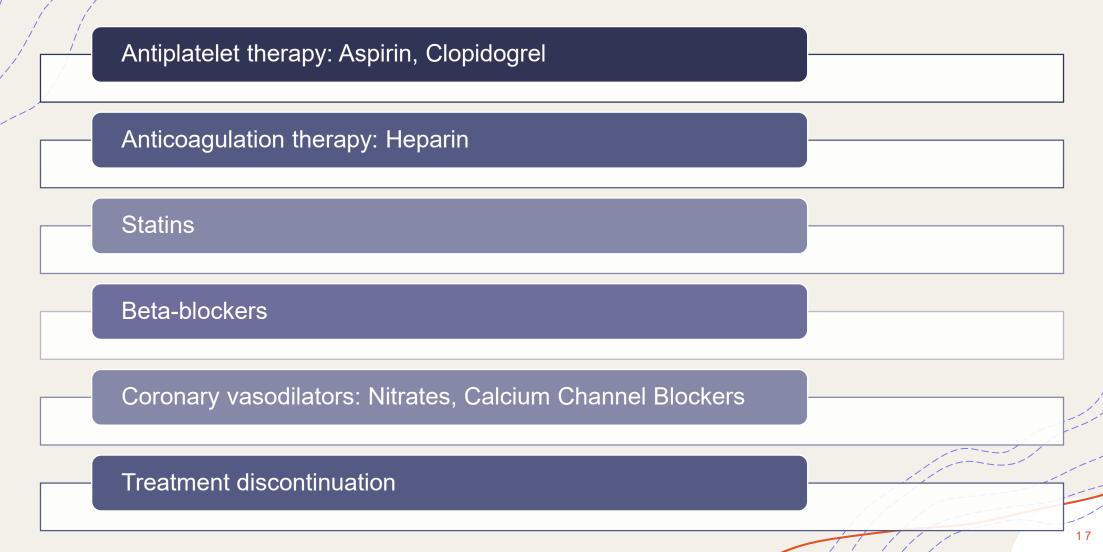
- Pro-thrombotic state
- Acute coronary syndrome

Contributing Agents

/	Antimetabolites	
	5-FU	

Anti-Microtubule Agents

paclitaxel docetaxel


Antibody-Based VEGF Inhibitor

bevacizumab

Small Molecular TKIs *sorafenib*

Proteasome Inhibitors *carfilzomib*

Management

Chang HM, et al. JACC 2017;70(20):2536-2551.

Hypertension

Etiology

+Hypertension: BP >140/90 mmHg

+Most common cardiovascular comorbidity reported in cancer registries

+Early diagnosis and treatment are essential

Alexandre J, et al. J Am Heart Assoc 2020;9:e018403. Campia U, et al. Circulation 2019;139:e579–e602. Chang HM, et al. JACC 2017;70(20):2552-2565. Curigliano G, et al. Ann Oncol 2020;31(2):171-190.

Contributing Agents

Systemic Hypertension	Other Contributing Agents
 VEGF inhibitors: bevacizumab, sorafenib, sunitinib Proteasome Inhibitors: carfilzomib 	 Monoclonal antibody based TKI: ado- trastuzumab emtansine Monoclonal antibodies: alemtuzumab, ibritumomab, ofatumumab, rituximab mTOR inhibitors: everolimus, temsirolimus Small molecule TKIs Proteasome inhibitors: bortezomib Antimetabolites: decitabine
Pulmonary Hypertension • Dasatinib	

Angiotensin converting enzyme inhibitors (ACEiS) Angiotensin II receptor blockers (ARBs) Dihydropyridine calcium channel blockers (CCBs) Endothelin receptor antagonists (ERAs)

Management

Treatment Target: <130/80 mmHg

Pharmacologic Management:

Systemic Hypertension: ACEis, ARBs, CCBs Pulmonary Hypertension: PDE5 Inhibitors, ERAs, CCBs

Routine blood pressure monitoring

х[°]

Manage modifiable cardiovascular risk factors

Alexandre J, et al. J Am Heart Assoc 2020;9:e018403. Campia U, et al. Circulation 2019;139:e579–e602. Chang HM, et al. JACC 2017;70(20):2552-2565. Curigliano G, et al. Ann Oncol 2020;31(2):171-190.

Pericardial Diseases

Etiology

Manifestation of latestage malignancies

- Lung cancer
- Breast cancer
- Leukemia
- Lymphoma

Can also develop due to:

- Chemotherapy
- Radiation therapy
- Opportunistic infections

Contributing Agents

Management

- + Diagnosis: Echocardiography, MUGA scan
- Patients are often asymptomatic with small to moderate pericardial effusion but can be symptomatic with impending cardiac tamponade
- + Initial management: Find/treat underlying cause, pericardiocentesis
- + Recurrent pericardial effusion: Surgery

Thromboembolism

+

●→◆ ↓ ■←●

Release of prothrombotic factors into the circulation that activate the clotting cascade

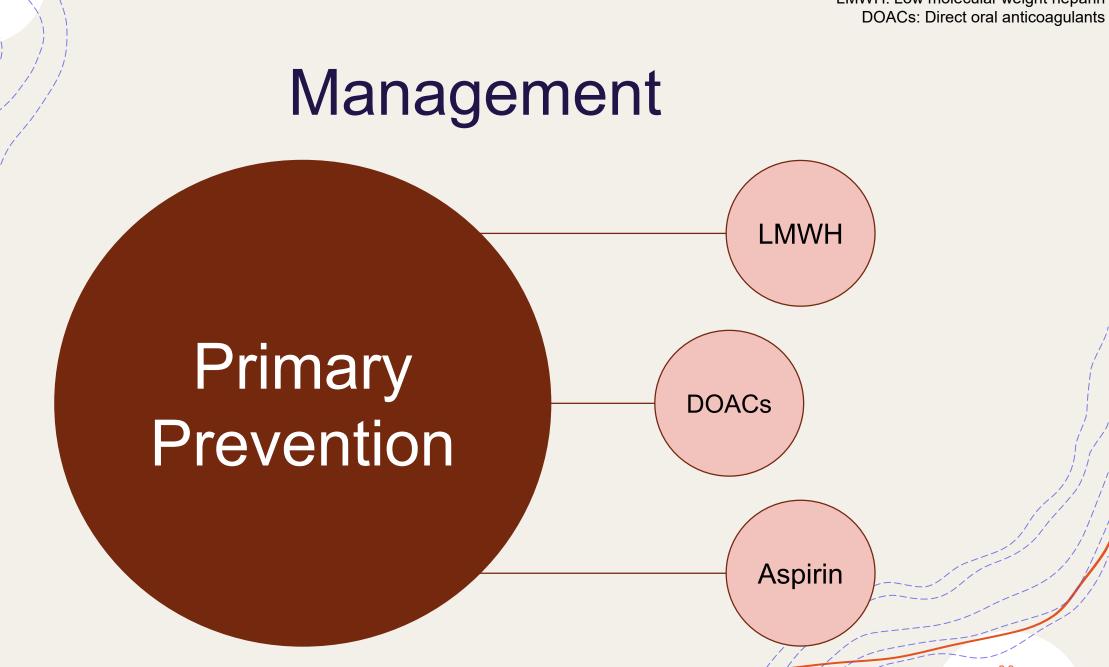
Risk is higher in the first 6 months after diagnosis and returns to baseline at 1 year

Risk is higher with certain cancers, metastatic diseases, and certain risk factors

Contributing Agents

Alkylating Agents cisplatin

Angiogenesis Inhibitors lenalidomide thalidomide pomalidomide


Histone Deacetylase Inhibitors *vorinostat*

Small Molecule TKIS

axitinib, dabrafenib, erlotinib, nilotinib, pazopanib, ponatinib, sunitib, trametinib, zivaflibercept

VEGF Inhibitors bevacizumab

LMWH: Low molecular weight heparin

+ QTc Prolongation

Etiology

+Abnormality in depolarization/repolarization + Can lead to torsades de pointes and sudden death

+Normal QTc interval: + <430 ms in males + <450 ms in females

+QTc interval prolongation is defined as:
+QTc prolongation >500 ms AND/OR
+ΔQTc of >60 ms AND/OR
+ Ventricular arrhythmia occurrence

Contributing Agents

Histone Deacetylase Inhibitors *belinostat vorinostat*

Small Molecule TKIs dabrafenib, dasatinib, lapatinib, nilotinib, vandetanib

BRAF Inhibitor *vemurafenib*

Arsenic Trioxide

Drug-Drug Interactions

Management

Baseline ECG

• Repeat 7 days after therapy initiation

Correct electrolyte abnormalities and cardiac risk factors

• Hypokalemia and hypomagnesemia

Identify drug-drug interactions

Temporarily interrupt cancer treatment

Management of torsades de pointes: 2 g IV magnesium

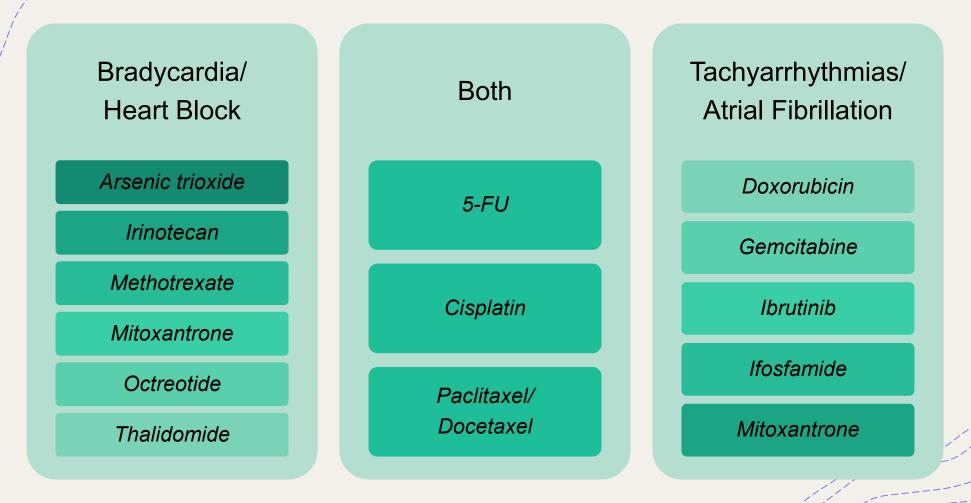
Arrhythmias

Etiology

Symptoms include fatigue, dizziness, syncope

Treatment of heart block depends on the type of escape rhythm present (junctional vs. ventricular) **Fachyarrhythmias**

Includes supraventricular arrhythmias, atrial fibrillation and ventricular arrhythmias


Incidence is higher in patients with stage IV cancer


Caused by QTc-prolonging agents, inflammation in advanced cancer, direct cardiac involvement by tumor, metabolic abnormalities

Afib is associated with advanced age, hypoxia, increased sympathetic drive, and/or paraneoplastic conditions

σ

Contributing Agents

Management

Rhythm vs. Rate Control

Rhythm control: class 1B antiarrhythmic drugs (lidocaine, mexiletine) less likely to cause drug interactions and QTc prolongation

Rate control: beta-blockers, digoxin or the non-dihydropyridine calcium channel blockers

Thromboembolic Prophylaxis

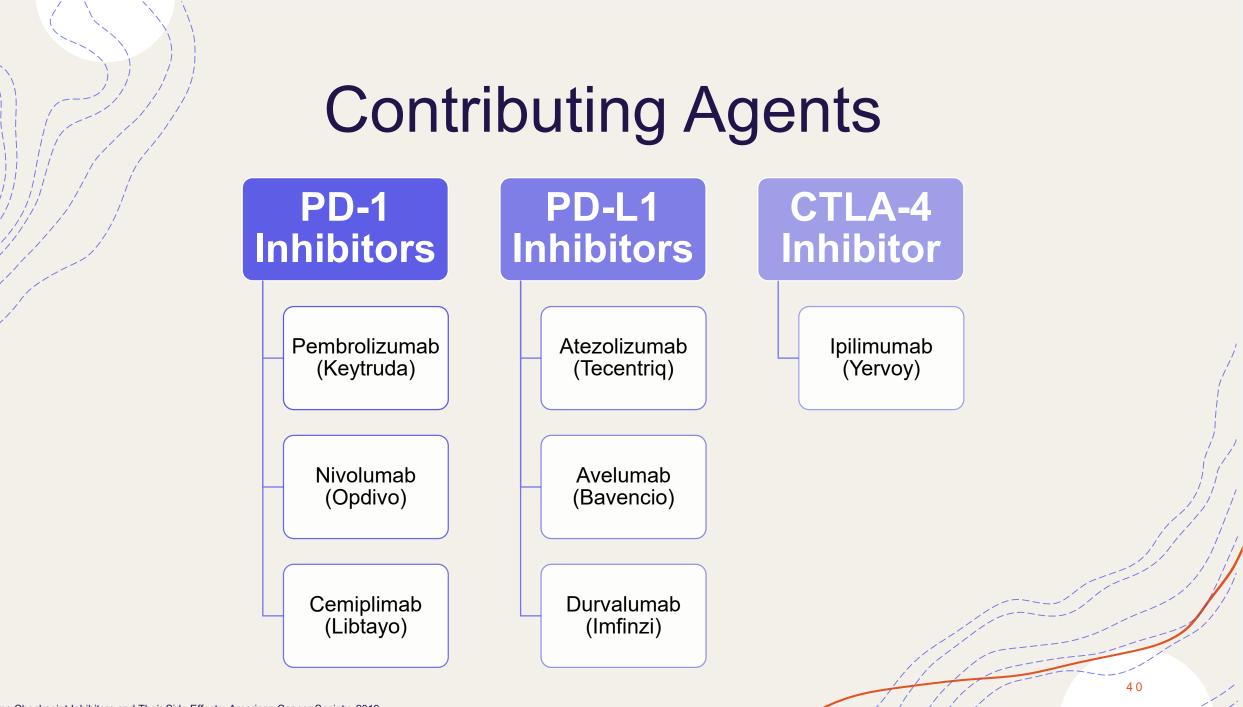
Decision based on CHA2DS2-VASc and HAS-BLED scores

Anticoagulation options include LMWH, warfarin and DOACs

Immune Checkpoint Inhibitor (ICI) – Related Myocarditis

Etiology

Immune checkpoints are T-cell regulatory pathways that inhibit antitumor T-cell activation


Leverage the immune system to identify and target cancer cells \rightarrow target PD-1, PDL-1, and CTLA-4 receptors

Myocarditis appears to be mediated by T-cells and macrophages

ICI-related myocarditis has a reported incidence of 0.04% to 1.14%

Median time to presentation of cardiotoxic effects is within 3 ICI cycles but ranges widely

Risk Factors: Pre-existing cardiovascular risk factors/disease, combination ICI therapy

Management

Differential Diagnosis: Appropriate work-up for ICI-associated CV toxicity Gold Standard: Endomyocardial biopsy

Suspicion or confirmation of ICI-associated myocarditis

- Hold ICI therapy
- Initiate high-dose corticosteroids (methylprednisolone 1000 mg/day followed by oral prednisone 1 mg/kg/day)
- For steroid-refractory or high-grade myocarditis with hemodynamic instability:
 - Anti-thymocyte globulin
 - Infliximab (except in patients with HF)
 - Mycophenolate mofetil
 - Abatacept

Permanently discontinue therapy with any clinical myocarditis

- Decision to restart therapy needs to be individualized
- If ICI therapy needs to be restarted, monotherapy with an anti-PD-1 agent might be considered

Steroid Tapering Example

1000 mg IV methylprednisolone daily x 3 days

2 mg/kg/day PO prednisolone for 14 days

1 mg/kg/day PO prednisolone for 14 days

Taper over at least 4 to 6 weeks

**Monitor troponin levels at dosage change

Clinical Implications

Scope of cardio-oncology is wide

- Prevention
- Detection
- Monitoring
- Treatment

Future novel cancer treatments

• Safe development to minimize impact on cardiovascular health

Assessment Questions

Assessment Question 1

Which of the following chemotherapeutic agents result in cardiotoxicities? *Select all that apply.*

- a) Doxorubicin
- b) Trastuzumab
- c) Fluorouracil
- d) Dasatinib

Assessment Question 1 – Correct Response

Which of the following chemotherapeutic agents result in cardiotoxicities? *Select all that apply.*

- a) Doxorubicin
- **b)** Trastuzumab
- c) Fluorouracil
- d) Dasatinib

Assessment Question 2

Which of the following is a common cardiotoxicity associated with anthracycline use?

- a) Pulmonary Hypertension
- b) Venous Thromboembolism
- c) QTc Prolongation
- d) Heart Failure

Assessment Question 2 – Correct Response

Which of the following is a common cardiotoxicity associated with anthracycline use?

- a) Pulmonary Hypertension
- b) Venous Thromboembolism
- c) QTc Prolongation
- d) Heart Failure

Assessment Question 3

Which pharmaceutical agents should not be used for the management of chemotherapy-induced hypertension?

- a) ACE Inhibitors
- b) Non-DHP Calcium Channel Blockers
- c) ARBs
- d) DHP Calcium Channel Blockers

Assessment Question 3 – Correct Response

Which pharmaceutical agents should not be used for the management of chemotherapy-induced hypertension?

- a) ACE Inhibitors
- b) Non-DHP Calcium Channel Blockers
- c) ARBs
- d) DHP Calcium Channel Blockers

REFERENCES

- Alexandre J, Cautela J, Ederhy S, et al. Cardiovascular Toxicity Related to Cancer Treatment: A Pragmatic Approach to the American and European Cardio-Oncology Guidelines. J Am Heart Assoc 2020;9:e018403.
- American Cancer Society [Internet]. Immune Checkpoint Inhibitors and Their Side Effects; [updated 2019 Dec 27; cited 2021 Jan 31]. Available from: <u>https://www.cancer.org/treatment/treatments-and-</u> <u>side-effects/treatment-types/immunotherapy/immune-checkpoint-inhibitors.html</u>
- Armenian SH, Lacchetti C, Barac A, et al. Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2016;35:893-911.
- Campia U, Moslehi JJ, Amiri-Kordestani L, et al. Cardio-Oncology: Vascular and Metabolic Perspectives. A Scientific Statement From the American Heart Association. Circulation 2019;139:e579–e602.
- + Chang HM, Moudgil R, Scarabelli T, et al. Cardiovascular Complications of Cancer Therapy. Best Practices in Diagnosis, Prevention, and Management: Part 1. JACC 2017;70(20):2536-2551.
- + Chang HM, Okwuosa TM, Scarabelli T, et al. Cardiovascular Complications of Cancer Therapy. Best Practices in Diagnosis, Prevention, and Management: Part 2. JACC 2017;70(20):2552-2565.
- Curigliano G, Lenihan D, Fradley M, et al. Management of Cardiac Disease in Cancer Patients Throughout Oncological Treatment: ESMO Consensus Recommendations. Ann Oncol 2020;31(2):171-190.
- + Key NS, Khorana AA, Kuderer NM, et al. Venous Thromboembolism Prophylaxis and Treatment in Patients With Cancer: ASCO Clinical Practice Guideline Update. J Clin Oncol 2019;38:496-520.
- Lyon AR, Yousaf N, Battisti NML, et al. Immune checkpoint inhibitors and cardiovascular toxicity. Lancet Oncol 2018;19:e447–58.
- Palaskas N, Lopez-Mattei J, Durand JB, et al. Immune Checkpoint Inhibitor Myocarditis:
 Pathophysiological Characteristics, Diagnosis, and Treatment. J Am Heart Assoc 2020; 9(2).
- + Zinecard (dexrazoxane) package insert. New York, NY: Pfizer; 2016 Oct.

Thank you!

Dwiti Patel, PharmD Drug Information Resident <dwiti.patel@pharmacy.rutgers.edu>