Continuous Renal Replacement Therapy: Antimicrobial Dosing Considerations

A presentation for HealthTrust Members March 18, 2021

> HaYoung Ryu, PharmD PGY-1 Pharmacy Resident Robert Wood Johnson University Hospital

Deepali Dixit, PharmD, BCPS, BCCCP, FCCM, Preceptor Clinical Associate Professor, Ernest Mario School of Pharmacy Rutgers University

Conflict of Interest Disclosure

- There are no relevant financial interest to disclose for myself or my spouse/partner within the last 12 months.
- Preceptor conflict of interest disclosure: There are no relevant financial interest to disclose.
- Note: This program may contain the mention of suppliers, brand products, services, or drugs presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes only and should not be perceived as an endorsement of any particular supplier, brand, product, service or drug.

Learning Objectives

At the end of this session, participants should be able to...

- Compare and contrast various modalities of continuous renal replacement therapy (CRRT)
- Identify CRRT-specific considerations impacting pharmacokinetic and pharmacodynamic properties of antimicrobial drugs
- Recommend optimal antimicrobial dosing in patients receiving CRRT

Review of Physiologic Changes in the Critically-ill

Physiologic Changes

Fluid shift "Third spacing"

Endothelial damage & capillary leakage

→ increased interstitial volume

Fluid overload

Resuscitation fluid boluses, decreased urine output, drugs → increased volume of distribution

Impaired tissue perfusion

Hemodynamic instability, vascular dysfunction → impaired drug delivery to tissues

Hypoalbuminemia

Decreased protein in serum → increased free drug concentration

Source: Roberts et al. Lancet Infect Dis. 2014;14(6):498-509.

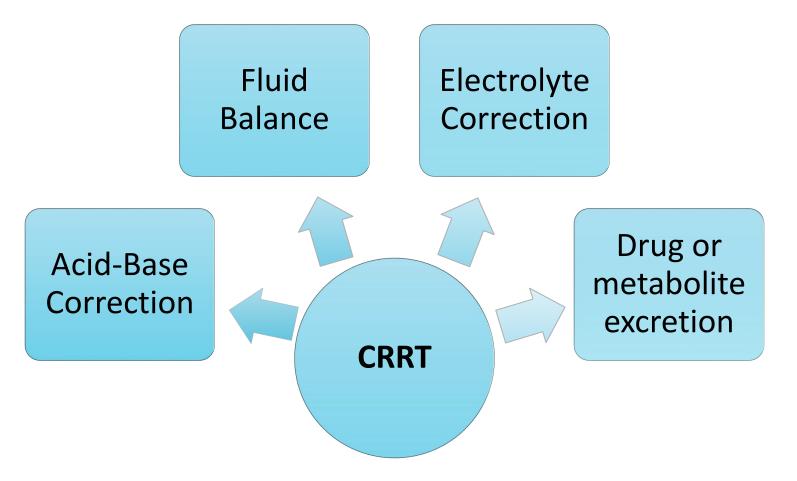
Acute Kidney Injury (AKI)

- Kidney Disease: Improving Global Outcomes (KDIGO) criteria
 - Increase in SCr \geq 0.3 mg/dl within 48 hours
 - \ge 50% increase in SCr from baseline, occurring within 7 days
 - Urine output of < 0.5 ml/kg/hour for 6 hours</p>

Source: KDIGO 2012 Clinical practice guideline for acute kidney injury.

AKI in the Critically-ill

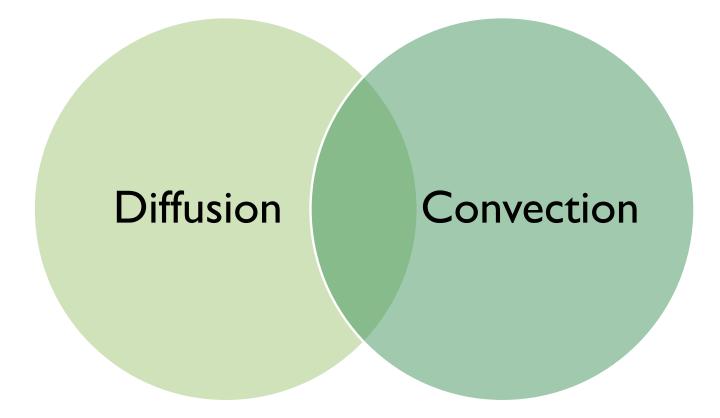
- Reported incidence rates vary (~25%)
- Impacts drug clearance
- Initiation of renal replacement therapy (RRT)


Source: Susla GM. AACN Adv Crit Care. 2015;26(3):244-251.

Continuous Renal Replacement Therapy (CRRT)

What is CRRT?

 24-hour continuous therapy indicated for solute and/or fluid removal in the critically-ill



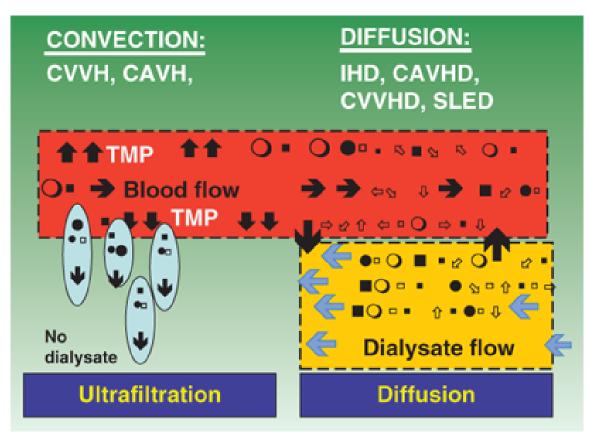
Source: Coritsidis et al. Critical Care. McGraw-Hill; Accessed February 9, 2021.

CRRT Modalities

- Continuous veno-venous hemodialysis (CVVHD)
- Continuous veno-venous hemofiltration (CVVH)
- Continuous veno-venous hemodiafiltration (CVVHDF)

Solute Removal in CRRT

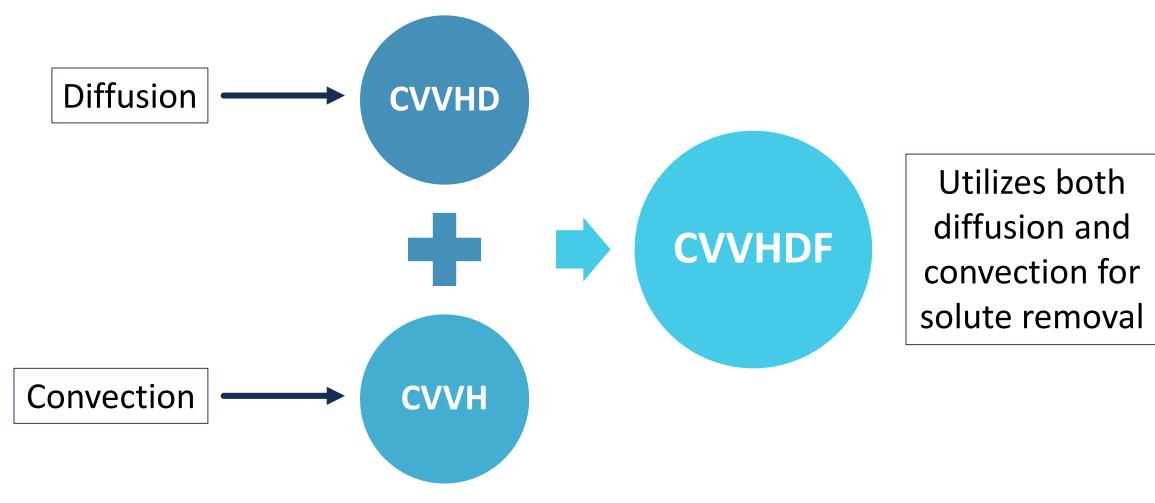
Diffusion


- Movement of solutes from an area of higher to lower concentration until equilibrium is established
- Efficient method for removing small molecules
- Occurs as blood flows on one side of a membrane while dialysate solution flows counter-current on the other side
 - Membrane pore size, surface area, molecular size, and solute concentration affect clearance

Convection

- A one-way movement of solutes through a semipermeable membrane with a water (replacement fluid) flow
- Movement driven by a transmembrane pressure gradient in response to an osmotic force
 - Dissolved solutes are dragged along with ultrafiltrated plasma water
 - Allows clearance of both small and large molecules

Source: Coritsidis et al. Critical Care. McGraw-Hill; Accessed February 9, 2021.


Mechanisms of solute clearance in various modalities of Renal Replacement. TMP, transmembrane pressure, or hydrostatic pressure; UF, ultrafiltration; $\bullet \Box^* \blacksquare$ = solutes.

Source: John M. Oropello, Stephen M. Pastores, Vladimir Kvetan: Critical Care www.accessmedicine.com Copyright © McGraw-Hill Education. All rights reserved.

Source: Chapter 31 Renal Replacement Therapy, Oropello JM, Pastores SM, Kvetan V. *Critical Care;* 1. Available at: https://accessmedicine.mhmedical.com/content.aspx?sectionid=143517688&bookid=1944 Accessed: February 09, 2021 Copyright © 2021 McGraw-Hill Education. All rights reserved

Principles of CRRT

Source: Coritsidis et al. Critical Care. McGraw-Hill; Accessed February 9, 2021.

Question #1

Through what mechanism are drugs removed from the blood in a patient receiving CVVHD?

- A. Convection
- B. Diffusion
- C. Both convection and diffusion

Question #1 - Response

Through what mechanism are drugs removed from the blood in a patient receiving CVVHD?

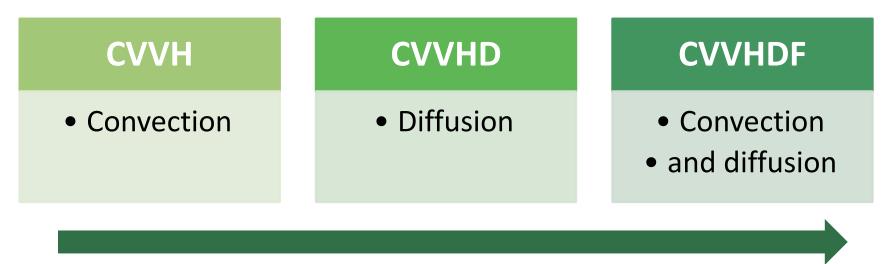
- A. Convection
- **B.** Diffusion
- C. Both convection and diffusion

Factors Affecting Drug Removal in CRRT

CRRT System-specific Factors

Flow Rates

Dialysate volume


Replacement fluid volume

Blood flow rate

- Increasing dialysate and replacement fluid flow rate increases drug removal
- Blood flow rate generally has little effect on drug removal

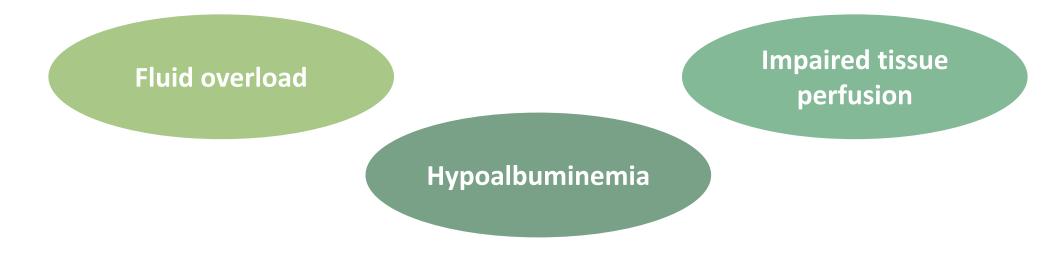
CRRT System-specific Factors

Removal Mechanism

Increasing Efficiency of Drug Removal

Source: Choi et al. Crit Care Med. 2009;37(7): 2268-2279.

CRRT System-specific Factors

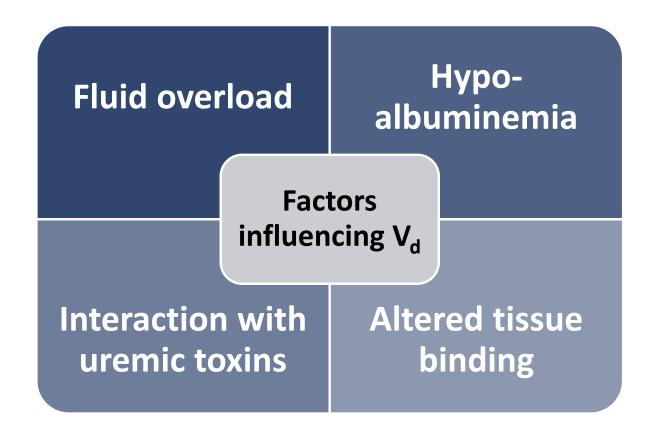

- Placement of replacement fluid pre-dilution vs. post-dilution
 - Predilution method will dilute the contents prior to the contact with the filter → ↓ drug concentration in blood → reduced elimination
- Membrane/filter type
- Flow interruptions

Sources: Choi et al. Crit Care Med. 2009;37(7): 2268-2279. Jang et al. Pharmacy. 2020;8(1).

Patient-specific Factors

Pharmacokinetic/pharmacodynamic (PK/PD) changes in the critically-ill

 Altered drug distribution and protein binding due to hemodynamic instability, changes in fluid distribution, and hypoalbuminemia



Patient-specific Factors

- Residual renal function
 - Underlying kidney functionality
 - Drug elimination as a result of the residual renal function in addition to the elimination via CRRT
 - May fluctuate \rightarrow important to assess changing residual renal function!

Sources: Susla GM. AACN Adv Crit Care. 2015;26(3):244-251. Pistolesi et al. Antimicrob Agents Chemother. 2019;63(8):e00583-19.

- Volume of distribution (V_d)
 - Ratio of the amount of drug in the body over the plasma concentration
 - Small V_d associated with clinically significant drug removal via CRRT

- Molecular weight
 - Small molecules are more easily removed
 - Most CRRT utilize "high-flux" membranes
 - Large surface areas, high porosity (~20,000 Da), and high ultrafiltration rate
 - Contribute to significant removal of larger drugs such as vancomycin and daptomycin

Sources: Pistolesi et al. Antimicrob Agents Chemother. 2019;63(8):e00583-19. Hoff et al. Ann Pharmacother. 2020;54(1):43-55.

- Protein binding
 - Drugs with high affinity (≥ 70%) to proteins → less free drug available for elimination
 - Protein binding may be altered due to multiple factors
- Drug adsorption
 - Binding of drug to the dialyzer membrane
 - Elimination via adsorption is negligible

Sources: Susla GM. AACN Adv Crit Care. 2015;26(3):244-251. Pistolesi et al. Antimicrob Agents Chemother. 2019;63(8):e00583-19. Choi et al. Crit Care Med. 2009;37(7): 2268-2279.

Sieving coefficient (SC)

- SC = Ultrafiltrate concentration Blood concentration
- Different for each drug
- Dependent on multiple factors
 - Molecular size
 - Protein binding
 - Charge of the solute and the filter membrane
 - Size and number of pores in the filter membrane

Sources: Pistolesi et al. Antimicrob Agents Chemother. 2019;63(8):e00583-19. Jang et al. Pharmacy. 2020;8(1).

Question #2

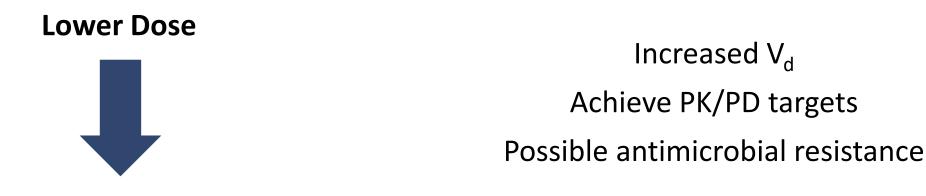
Which of the following factors affect drug clearance in patients receiving CRRT? *Select all that apply.*

- A. Volume of distribution
- B. Protein binding
- C. Dialysate flow rate
- D. Blood flow rate
- E. Non-renal elimination

Question #2 - Response

Which of the following factors affect drug clearance in patients receiving CRRT? *Select all that apply.*

- A. Volume of distribution
- **B.** Protein binding
- **C.** Dialysate flow rate
- D. Blood flow rate
- **E.** Non-renal elimination


Optimizing Antimicrobial Dosing

Infections in the Critically-ill

- International study observing intensive care unit (ICU) patients across 1150 centers showed 54% had either suspected or proven infection
 - In-hospital mortality = **30%** (2404/8135)
 - **70%** with suspected/proven infection received at least 1 antibiotic

Considerations for Dose Adjustment

Reduced renal elimination Minimize drug toxicity

Sources: Hoff et al. Ann Pharmacother. 2020;54(1):43-55. Susla GM. AACN Adv Crit Care. 2015;26(3):244-251.

Antimicrobials Not Requiring Dose Adjustment

- Highly protein-bound (\geq 70%)
- Large $V_d (\geq 2 L/kg)$
- Mainly cleared by a non-renal route (e.g., hepatic elimination, feces)

Sources: Hoff et al. Ann Pharmacother. 2020;54(1):43-55. Pistolesi et al. Antimicrob Agents Chemother. 2019;63(8):e00583-19.

Antimicrobials Not Requiring Dose Adjustment

Antibiotics		Antifungals
Ciprofloxacin	• Linezolid	Voriconazole
 Moxifloxacin 	 Tedizolid 	 Posaconazole
Ceftriaxone	 Tigecycline 	 Echinocandins
Polymyxin B	Clindamycin	Amphotericin B
	 Azithromycin 	

Sources: Li et al. Front Pharmacol. 2020;11:786. Pistolesi et al. Antimicrob Agents Chemother. 2019;63(8):e00583-19.

Antimicrobials Requiring Dose Adjustment

Antibiotics		Antifungal
 I actamase inhibitors Cephalosporins Data 	LevofloxacinVancomycinDaptomycin	Fluconazole
		Antiviral
	 Aminoglycosides 	 Acyclovir

Sources: Li et al. Front Pharmacol. 2020;11:786. Pistolesi et al. Antimicrob Agents Chemother. 2019;63(8):e00583-19. Hoff et al. Ann Pharmacother. 2020;54(1):43-55.

Acyclovir

- Small molecular size, low protein-binding capacity, water-soluble
 - Readily cleared via CRRT, 24-hour clearance ≅ clearance during a single session of intermittent hemodialysis
 - A narrow therapeutic index in patients with renal dysfunction
- Suggested dose adjustment: 5 to 7.5 mg/kg IV Q24H
 - Same for all types of CRRT
 - Utilize therapeutic drug monitoring (TDM) if available

Sources: Li et al. Front Pharmacol. 2020;11:786. Trotman et al. CID. 2005;41(8):1159-1166.

β -lactam/ β -lactamase Inhibitors

Piperacillin-tazobactam

- Clearance reliably predictable based on effluent flow rate
- Continuous infusion (total 9 grams/day) or extended infusion is ideal (i.e., 3.375 g IV Q8H, 4-hour infusion)
- If extended or continuous infusion is not possible
 - CVVH: 2.25 or 3.375 grams IV Q6H
 - CVVHD or CVVHDF: 3.375 grams IV Q6H or 4.5 grams IV Q8H

Sources: Li et al. Front Pharmacol. 2020;11:786. Trotman et al. CID. 2005;41(8):1159-1166.

β -lactam/ β -lactamase Inhibitors

- Ceftazidime-avibactam: limited data available for dosing during CRRT
 - 2.5 gram IV every 8 hours recommended

- Ceftolozane-tazobactam: dosing largely based on effluent flow rate
 - For high-flux dialyzers with flow rates of 1.5-3 L/hour: 1.5 g IV every 8 hours
 - Shown to achieve concentration above the minimum inhibitory concentration (MIC) for entire dosing interval

Cefepime & Ceftazidime

- Clearance dependent on CRRT modality & effluent rate
 - Goal %*f*T≥MIC: 70% and higher
 - MIC breakpoint for *P. aeruginosa* 8 μg/mL
 - Prior studies have demonstrated suboptimal rate of goal attainment

Cefepime	Ceftazidime	
High flow rate (> 1.5 L/h): 2 g IV Q8H	Loading dose: 2 grams	
Low flow rate (\leq 1 L/h): 1 g IV Q8H	Maintenance dose: 1-2 g IV Q12H	

Sources: Li et al. Front Pharmacol. 2020;11:786. Jang et al. Pharmacy. 2020;8(1).

Ceftaroline

- Low molecular weight, highly water-soluble, low protein binding
 - Goal %*f*T≥MIC: 45-50%
- Renal clearance ~65%; non-renal clearance ~35%
- Limited data available for dosing adjustment in CRRT
 - Adjust based on patient's adjusted body weight and effluent flow rate

Source: Kalaria et al. Pharmacotherapy. 2021.

Suggested Dosing Regimen for Ceftaroline^{a,b,c}

Effluent Flow		Adjusted Body Weight (kg) ^e				
Rate (L/h) ^d	50	60	70	80	90	
1	200	200	300	300	300	
1.5	200	300	300	300	400	
2	300	300	300	300	400	
2.5	300	300	300	400	400	
3	300	300	400	400	400	
3.5	300	400	400	400	400	
4	300	400	400	400	500	
4.5	400	400	400	500	500	
5	400	400	400	500	500	

^aRecommended dosages (mg) are to be given as an IV infusion over 60 min every 12 h.

^bCRRT clearance was calculated using the following variables and range of values: hematocrit (25%–60%), effluent flow rate (1–5 L/h), blood flow rate (100–300 ml/min), pre-filter replacement therapy dilution percent (50%–100%), and adjusted body weight (50–90 kg).

^cJustification for proposed dosages are based on matching exposures (AUC) in patients with normal renal function receiving a dose of 600 mg every 12 h and achieving a %fT \geq 1 mg/L of 50% and 45% for S. pneumoniae and S. aureus, respectively.

^dEffluent flow rate is calculated by the summation of replacement fluid rate, pre-blood pump rate, net ultrafiltrate rate, and dialysate flow rate.

^eAdjusted body was calculated using the following formula: Ideal Body Weight + 0.4 × (Actual Body Weight – Ideal Body Weight), where Ideal body weight was calculated using the Devine formula.

Meropenem & Imipenem

- Significant variability in data
 - Dosing regimen should be adjusted based on effluent flow rate and MIC of the target pathogen
 - Residual renal function also contributes to overall clearance
- Utilizing a continuous infusion may improve clinical efficacy (%T>MIC)

Sources: Li et al. Front Pharmacol. 2020;11:786. Trotman et al. CID. 2005;41(8):1159-1166.

Suggested Dosing Regimen for Meropenem and Imipenem

TABLE 3 | Recommendation of drug adjustment in CRRT.

Drug	CRRT mode				
	Сулн	СVVHD	CVVHDF		
Meropenem	Ultrafiltration rate: $22 \pm 12 \text{ ml/kg/h}$ 1 g q12h (MIC $\leq 1 \text{ mg/L}$) (Seyler et al., 2011) Ultrafiltration rate: $\geq 4 \text{ L/h}$ 1 g q8h (Bilgrami et al., 2010) Ultrafiltration rate: 35 ml/kg/h 1 g q8h 1h infusion (Onichimowski et al., 2020b)	Dialysate rate: 20–35 ml/kg/h 2 g q12 h; or Loading dose:1 g, Maintenance dose:500 mg q8 h; or Loading dose:1 g LD, Maintenance dose:1 g q12 h (Shaw and Mueller, 2017) Dialysate rate:35 ml/kg/h 1 g q8h 1h infusion (Onichimowski et al., 2020b) Dialysate rate: 0.7–1 L/h 0.25 q24h for MIC \leq 2 mg/L >0.5 g q8h for MIC \leq 16 mg/L (Kawano et al., 2015) Dialysate rate: 30 ml/kg/h 1 g q8h or 2 g q8h or 3 g continuous infusion q24h (Grensemann et al., 2020)	Ultrafiltration rate: $22 \pm 12 \text{ ml/kg/h}$ Dialysate rate: $23 \pm 9 \text{ ml/kg/h}$ 1 g q12h (MIC $\leq 1 \text{ mg/L}$) (Seyler et al., 2011) Ultrafiltration rate: 2 L/h Dialysate rate: 1 L/h 500 mg q8h (MIC $\leq 4 \text{mg/L}$) (Varghese et al., 2015) Ultrafiltration rate: 1.5–2 L/h Dialysate rate: 1–1.5 L/h 1 g q8h		
Imipenem	Ultrafiltration rate: 52 ± 14 ml/kg/h 1.0 g q6h Ultrafiltration rate: 20 or 37 ml/kg/h 0.5 g q6h for MIC \leq 2 mg/L, 1.0 g q6h for MIC 4– 16 mg/L (Li and Xie, 2019)	Dialysate rate: 20 or 37 ml/kg/h 0.5 g q6h for MIC \leq 2 mg/L, 1.0 g q6h for MIC 4– 16 mg/L (Li and Xie, 2019)	Combined flow rate: 20 or 37 ml/kg/h 0.5 g q6h for MIC \leq 2 mg/L, 1.0 g q6h for MIC 4–16 mg/L (Li and Xie, 2019)		

Levofloxacin

- Low V_d compared to moxifloxacin and ciprofloxacin
 - Clearance dependent on effluent rate ("CRRT intensity")
- Dosing recommendations vary
 - Loading dose of 500-750 mg followed by daily doses of 250 to 750 mg
 - PK/PD studies have shown that these recommended dose may not be sufficient to achieve target $AUC_{24}/MIC \ge 125$ in the first 72 hours
- May not be suitable as a monotherapy for P. aeruginosa

Sources: Li et al. Front Pharmacol. 2020;11:786. Trotman et al. CID. 2005;41(8):1159-1166.

Fluconazole

- Low molecular size, low V_d, and low protein binding
 - 80% eliminated unchanged via the kidneys
 - ~70% cleared by CRRT significant clearance
- General dosing recommendation
 - 400 mg daily (CVVH), 800 mg daily (CVVHD/CVVHDF)
 - May consider lower dose of 200-400 mg daily if known MIC \leq 8 mg/L and no concern for *C. glabrata*

Sources: Li et al. Front Pharmacol. 2020;11:786. Pistolesi et al. Antimicrob Agents Chemother. 2019;63(8):e00583-19. Trotman et al. CID. 2005;41(8):1159-1166.

Aminoglycosides

Pharmacokinetic considerations

- V_d to determine dose; elimination rate to determine dosing interval
- Loading patients with larger than usual initial dose associated with possible increased risk of toxicity
- Individualize dosing regimen to each patient and use of TDM strongly recommended
 - In general, dose every 24 to 48 hours

Vancomycin

- TDM recommended to ensure adequate dosing and safety
 - Monitoring of trough levels or AUC₂₄/MIC if available
- Consider loading dose of 20-35 mg/kg (max: 3 grams)
- Clearance is dependent on effluent flow rate

Sources: Li et al. Front Pharmacol. 2020;11:786. Trotman et al. CID. 2005;41(8):1159-1166. Rybak et al. Am J Health-Syst Pharm. 2020;77(11):835-864.

Daptomycin

- High protein binding and low V_d
- Daily doses of 6 to 12 mg/kg have been studied
 - Dosing based on target pathogen and infection type
 - Population-based PK studies have shown doses > 8 mg/kg in patients receiving CVVHDF may increase the risk of toxicity (e.g., increased creatinine phosphokinase)
 - Comparison of PK/PD parameters between Q24H and Q48H dosing showed Q48H dosing may result in suboptimal exposure

Question #3

Which of the following antimicrobial agents do not require dosing adjustment in a patient receiving CRRT? *Select all that apply.*

- A. Vancomycin
- B. Amphotericin B
- C. Meropenem
- D. Ciprofloxacin
- E. Tigecycline

Question #3 - Response

Which of the following antimicrobial agents do not require dosing adjustment in a patient receiving CRRT? *Select all that apply.*

- A. Vancomycin
- **B.** Amphotericin B
- C. Meropenem
- **D.** Ciprofloxacin
- E. Tigecycline

Pharmacist's Role

- Selection of an appropriate antimicrobial agent based on indication
- Identify when and how to adjust antimicrobial dose
 - Requires understanding of the CRRT modality as well as drug- and patientspecific factors affecting drug clearance
- CRRT order also may change frequently, be interrupted, or switched to intermittent hemodialysis
 - Stay vigilant of patient's "renal" function (residual renal function + CRRT)

Sources: Hoff et al. Ann Pharmacother. 2020;54(1):43-55. Li et al. Front Pharmacol. 2020;11:786.

Nurse's Role

- Recognition of antimicrobials in which clearance may be affected by CRRT
- Bedside assessment and communication of changes in patient's status to caring team members
 - Changes in patient's residual renal function
 - Changes and/or interruptions of CRRT

References

- Roberts JA, Abdul-Aziz MH, Lipman J, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. The Lancet Infectious Diseases. 2014;14(6):498-509.
- Kellum JA, Lameire N, Aspelin P, et al. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney International Supplements;2(1):1-138.
- Susla GM. Antibiotic Dosing in Critically III Patients Undergoing Renal Replacement Therapy. AACN Adv Crit Care. 2015;26(3):244-251.
- Coritsidis G, Bhatti S. Renal Replacement Therapy. In: Oropello JM, Pastores SM, Kvetan V. eds. Critical Care. McGraw-Hill; Accessed February 09, 2021. https://accessmedicine-mhmedical-com.proxy.libraries.rutgers.edu/content.aspx?bookid=1944§ionid=143517688
- Pistolesi V, Morabito S, Di Mario F, Regolisti G, Cantarelli C, Fiaccadori E. A guide to understanding antimicrobial drug dosing in critically ill patients on renal replacement therapy. Antimicrobial Agents and Chemotherapy. 2019:AAC.00583-00519.
- Choi G, Gomersall CD, Tian Q, Joynt GM, Freebairn R, Lipman J. Principles of antibacterial dosing in continuous renal replacement therapy. Crit Care Med. 2009;37(7):2268-2282.
- Jang SM, Infante S, Abdi Pour A. Drug Dosing Considerations in Critically III Patients Receiving Continuous Renal Replacement Therapy. Pharmacy (Basel). 2020;8(1).
- Li L, Li X, Xia Y, et al. Recommendation of Antimicrobial Dosing Optimization During Continuous Renal Replacement Therapy. Front Pharmacol. 2020;11:786.
- Hoff BM, Maker JH, Dager WE, Heintz BH. Antibiotic Dosing for Critically III Adult Patients Receiving Intermittent Hemodialysis, Prolonged Intermittent Renal Replacement Therapy, and Continuous Renal Replacement Therapy: An Update. Ann Pharmacother. 2020;54(1):43-55.
- Vincent JL, Sakr Y, Singer M, et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA. 2020;323(15):1478-1487.
- Trotman RL, Williamson JC, Shoemaker DM, Salzer WL. Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin Infect Dis. 2005;41(8):1159-1166.
- Kalaria S, Williford S, Guo D, et al. Optimizing ceftaroline dosing in critically ill patients undergoing continuous renal replacement therapy. Pharmacotherapy. 2021.
- Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. American Journal of Health-System Pharmacy. 2020;77(11):835-864.
- Xu X, Khadzhynov D, Peters H, et al. Population pharmacokinetics of daptomycin in adult patients undergoing continuous renal replacement therapy. Br J Clin Pharmacol. 2017;83(3):498-509.

Continuous Renal Replacement Therapy: Antimicrobial Dosing Considerations

Thank you for attending!

HaYoung Ryu, PharmD. PGY-1 Pharmacy Resident E-mail: hayoung.ryu@rwjbh.org