

Trauma to the Brain? Osmotics are the Game: An Update on Traumatic Brain Injury & Hyperosmolar Therapy

A presentation for HealthTrust members *April 21, 2020*

Jeffrey C. Obciana, PharmD PGY-2 Emergency Medicine Pharmacy Resident Rutgers University - Ernest Mario School of Pharmacy RWJ Barnabas Health University Hospital

Speaker Disclosures

- The presenter has no real or perceived conflicts of interest related to this presentation
- Note: This program may contain the mention of suppliers, brands, products, services or drugs presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes and should not be perceived as an endorsement of any supplier, brand, product, service or drug.

Learning Objectives

- Describe the literature evaluating the use of hyperosmolar agents in the treatment of traumatic brain injury and identify areas for future research
- Identify patients with traumatic brain injury for which treatment with hyperosmolar agents would be appropriate
- List the potential risks and benefits of using hyperosmolar agents in the treatment of severe traumatic brain injury

Background

According to the Centers for Disease Control and Prevention, traumatic brain injury (TBI) is defined as:

"A disruption in the normal function of the brain that can be caused by a bump, blow, or jolt to the head or a penetrating head injury."

Sources: Centers for Disease Control and Prevention. (2015). Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation. National Center for Injury Prevention and Control; Division of Unintentional Injury Prevention. Atlanta, GA.

Background

Alteration in brain function defined as one of the following:

- Any period of loss or decreased consciousness
- Any loss of memory for events immediately before or after the injury
- Neurological deficits such as muscle weakness, loss of balance or coordination, disruption of vision, change of speech or memory loss
- Altered mental status

Epidemiology

- Approximately 1.5 million visits to the emergency department annually are from TBI
- About 50,000 of these patients die from TBI
- Intentional self-harm, falls and motor vehicle collisions account for the majority of civilian TBI deaths
- Some characteristics of patients:
 - Higher rates in older adults (age >75) and young adults (age 15-24)

– Males

Sources: Centers for Disease Control and Prevention (2019). Surveillance Report of Traumatic Brain Injury-related Emergency Department Visits, Hospitalizations, and Deaths—United States, 2014. Centers for Disease Control and Prevention, U.S. Department of Health and Human Services.

Epidemiology

Sources: Centers for Disease Control and Prevention (2019). Surveillance Report of Traumatic Brain Injury-related Emergency Department Visits, Hospitalizations, and Deaths—United States, 2014. Centers for Disease Control and Prevention, U.S. Department of Health and Human Services.

Conditions

- Subdural Hematoma
 - Buildup of blood in the subdural space
 - Symptomatic w/in 24 hours after trauma & usually have a loss of consciousness (LOC) & a Glasgow Coma Scale (GCS) less than 8
- Traumatic Subarachnoid hemorrhage
 - Outcome and mortality directly related to amount of blood in subarachnoid space & GCS
- Intracerebral hematoma (ICH)

- 50% of patients with ICH will have LOC at time of impact

Pathophysiology

- Primary Injury: Injury that occurs directly from the traumatic event
 - Direct impact, rapid acceleration and deceleration, penetrating injuries and blasts
- Secondary Injury: Injury to the brain due to other factors such as hypoperfusion, hypoxia or electrolyte disturbances

Cerebral Hemodynamics & Increased Intracranial Pressure

- Cerebral blood flow (CBF) or amount of blood flow to the brain, is dependent on varying blood pressure, blood pH and oxygen/CO₂
- Hypertension/alkalosis/hypocarbia promotes cerebral vasoconstriction
- When O₂ declines, vessels dilate to optimize oxygen supply to the brain

Cerebral Hemodynamics & Increased Intracranial Pressure

- Cerebral blood flow dependent on pressure gradient across the blood brain barrier, also known as the cerebral perfusion pressure (CPP)
- Cerebral perfusion pressure decreases as intracranial pressure (ICP) increases
- Avoiding decreases in mean arterial pressure (MAP) are crucial
- Intracranial pressure considered elevated above 15 mmHg and increased risk of mortality in >22 mmHg

CPP = MAP - ICP

Sources: Advanced Trauma Life Support, Tenth Edition. 2018 *Relationship between ICP, MAP and CPP*. (2020). [Image]. Retrieved from https://i.ytimg.com/vi/I21hyLHP3Y0/maxresdefault.jpg

Monro-Kellie Doctrine

- Volume in intracranial space remains constant as skull is rigid
- Venous blood and CSF can be displaced to compensate for increase in the volume of mass

Complication of Increased ICP

- When the body is unable to compensate for the increased pressure in the skull, cerebral herniation is imminent
- Cerebral herniation is when the brain is displaced within the skull

Sources: Advanced Trauma Life Support, Tenth Edition. 2018

Types of Herniation

Uncal herniation

- Most common type
- Due to hematomas in the lateral medial fossa & push brain matter into the uncus
- Cerebellotonsilar herniation
 - Occurs when a mass extends downwards and herniates through the foramen magnum
 - Respiratory & cardiovascular failure due to cerebellar dysfunction
- Central transtentorial herniation
 - Lesion or mass at the vertex of the brain pushing downwards

Cushing's Reflex or Triad

- The Cushing's reflex or triad is a set of manifestations that result due to a life-threatening increase in ICP
- The three manifestations are:
 - Progressive hypertension
 - Bradycardia
 - Respiratory irregularity
- Approximately one-third of patients with lifethreatening increases in ICP will exhibit the Cushing's Triad

Neurological Examination

Pupillary Exam

- Pupil asymmetry, inability to react to light and/or dilated pupils indicative of pressure on Cranial Nerve III (CNIII)
- CN III has effects on parasympathetic fibers
 & pupil dilation due to unopposed
 sympathetic activity

Neurology Exam

- Glasgow-Coma Scale after resuscitation and stabilization
 - Objective means of quantifying level of consciousness
 - Mild TBI (GCS 13-15)
 - Moderate TBI (GCS 9-12)
 - Severe TBI (GCS <9)

TABLE 6-2 GLASGOW COMA SCALE (GCS)					
ORIGINAL SCALE	REVISED SCALE	SCORE			
Eye Opening (E) Spontaneous To speech To pain None	Eye Opening (E) Spontaneous To sound To pressure None Non-testable	4 3 2 I NT			
Verbal Response (V) Oriented Confused conversation Inappropriate words Incomprehensible sounds None	Verbal Response (V) Oriented Confused Words Sounds None Non-testable	5 4 3 2 I NT			
Best Motor Response (M) Obeys commands Localizes pain Flexion withdrawal to pain Abnormal flexion (decorticate) Extension (decerebrate) None (flaccid)	Best Motor Response (M) Obeys commands Localizing Normal flexion Abnormal flexion Extension None Non-testable	6 5 4 3 2 I NT			

Management

General Management

Prevent secondary brain injury from hypoxia and hypotension

Airway management of Hypoxia/Hypercarbia

⊙Maintain SpO ₂ above 90%	Intubation if: - GCS <9 - Possible risk of airway	Hyperventilation in life- threatening increases
	compromise - SPO ₂ less than 90% despite supplemental O ₂	in ICP

Sources: (Carney, 2016) (Advanced Trauma Life Support, Tenth Edition. 2018)

General Management

Prevent secondary brain injury from hypoxia and hypotension

Circulatory management of Hypotension

Administer isotonic
 fluids (NS) or blood
 products

Maintain SBP >110 for patients age 15-49 and SBP >100 for patients age 50-69

Sources: (Carney, 2016) (Advanced Trauma Life Support, Tenth Edition. 2018)

Hyperosmolar Therapy

Hyperosmolar Therapy

- Since ICP is increased, CPP is decreased; therefore, blood flow into the brain is also decreased
- Hyperosmolar therapy is used to increase CPP by decreasing ICP instead of increasing MAP with vasopressors

CPP= MAP – ICP

Hyperosmolar Therapy

- If the growing hematoma or mass extends beyond the capacity of the body's compensatory mechanisms, therapy beyond hyperosmolar therapy is needed (i.e., neurosurgical intervention)
- Hyperosmolar therapy is a temporizing measure & may bridge therapy for transport to the operating room for emergent decompression of the cranial space

Brain Trauma Foundation Severe Traumatic Brain Injury Guidelines

- The most up to date edition of the Brain Trauma Foundation's (BTF) Severe Traumatic Brain Injury Guidelines provide recommendations on use of hyperosmolar agents for severe TBI
- These guidelines sought to compare the effectiveness of different hyperosmolar agents

Hyperosmolar Therapy

- Indication for use of Hyperosmolar Therapy
 - The current BTF Severe TBI Guidelines recommend restricting hyperosmolar therapy "prior to ICP monitoring to patients with signs of transtentorial herniation or progressive neurological deterioration not attributable to extracranial causes"
 - The 10th edition of the Advanced Trauma Life Support (ATLS) Guidelines mentions neurological deterioration as evident by development of "a dilated pupil, hemiparesis, or loss of consciousness"

A Tale of Two Therapies

- Mannitol
 - Mainstay therapy according to current BTF Traumatic Brain Injury Guidelines
 - Postulated to reduce blood viscosity thereby increasing CBF
 & oxygen transport
 - Due to hyperosmotic properties, draws fluid out from brain
- Hypertonic Saline (HTS)
 - Alternative hyperosmotic agent with increasing use for TBI
 - Hypertonic solution to draw fluid from the brain

Mannitol

- Mannitol has been used historically for traumatic brain injuries & is still the current recommendation by BTF for the control of raised ICP
- As per the ATLS 10th edition guidelines, the recommended dosing is as follows:
 - Impending herniation: 1 g/kg over 5–10 min.
 - Control elevated ICP: 0.25-1 g/kg over 30-60 min.

Mannitol

- Available as a 20% solution IV bag or vial
- Warning & precautions
 - Can cause renal failure
 - Hypotension in large doses from action as an osmotic diuretic
 - Possible rebound cerebral edema due to leakage of mannitol into brain, reversing gradient
 - Can crystallize; therefore, needs to be warmed to prevent occurrence

Monitoring for Mannitol

- Mannitol should be monitored for serum osmolality. An osmolality of less than 320 mOsm should be maintained
- Fluid status
- Renal function
- Blood pressure
- Intracranial pressure (maintain below 20 mmHg)

- Available as a 3% or 23.4% solution
- Dosing
 - Impending herniation
 - 23.4% NaCl: 30 to 60 mL over 5–10 minutes
 - 3% NaCl: 250 mL over 15–30 minutes
 - Control elevated ICP
 - 3% NaCl: 30 mL to 50 mL/hour

- Potential benefits
 - Is not an osmotic diuretic as mannitol is, therefore, hypotension less of a concern
 - Endothelium of blood-brain-barrier is less permeable to sodium and therefore more osmotically active
 - Less risk of adverse effects such as rebound ICP elevation and renal failure
 - Less volume required if using the 23.4%, which is beneficial in the hemorrhagic trauma patient

- Potential Risks
 - Central pontine myelinolysis
 - State in which there is programmed death of myelinproducing oligodendrocytes
 - Results in acute paralysis, dysphagia, and other neurological symptoms
 - Occurs when serum sodium is rapidly corrected during a hyponatremic state
 - Risk is greatest in those who have an initial sodium concentration ≤ 105 mEq/L, hypokalemia, alcoholism, malnutrition & liver disease

- Potential Risks
 - Rebound increase in ICP
 - One study noticed a rebound in ICP in nonsurvivors 2 hours after receiving HTS when compared to survivors
 - This finding was also consistent when the authors stratified for good vs. poor neurological outcome

Hours after hypertonic saline administration

Monitoring for Hypertonic Saline

- Hypertonic saline should be monitored for serum sodium levels. Maximum sodium level tolerable is 160 mEq/L
 - Maintain a gradual increase in sodium as rapid correction may result in central pontine myelinolysis
- Blood pressure
- Intracranial pressure (maintain below 20 mmHg)

Clinical Studies

RUTGERS Ernest Mario School of Pharmacy

Cottenceau et al., 2011: Hypertonic Saline vs. Mannitol

- Randomized control trial
- Purpose of the study: to evaluate average time above an ICP of 20 mmHg
- Number of patients: 47 total
 - 22 patients in the HTS 7.5% group and 25 patients in the mannitol 20% group
- Results:
 - Average time of ICP >20 (11.1 \pm 7.9 h) vs (8.4 \pm +5.9 h)
 - HTS and mannitol both equally reduced ICP and increased CPP and cerebral blood flow
 - No difference in neurological outcomes
- Conclusion:
 - Mannitol was as effective as HTS in decreasing ICP in TBI

Mangat et al., 2014: Hypertonic Saline vs. Mannitol

Design	A retrospective cohort study. (n=73)		Mannitol (n= 25)	HTS (n=25)	P-value
Purpose	Compare the effects of mannitol and HTS on the cumulative and daily ICP burdens	Cumulative			
 Inclusion: Age ≥ 16 and were hospitalized for at Interventions: Mannito Primary Outcomes: Curr burden (hours/day) Cumulative ICP I a patient had an Daily ICP burder with an ICP >25 	 Inclusion: Age ≥ 16 and suffered a severe TBI in which they were hospitalized for at least 5 days Interventions: Mannitol or hypertonic saline 	ICP burden (%)	36.5%	15.2%	0.003
	 <u>Primary Outcomes:</u> Cumulative ICP burden (%) and daily ICP burden (hours/day) Cumulative ICP burden defined as percentage of days a patient had an ICP spike >25 mmHg Daily ICP burden defined as average hours per day with an ICP >25 mmHg 	Daily ICP burden (hours/day ± standard deviation)	1.3 ± 1.3	0.3 ± 0.6	0.001
Results	 Significant decrease in cumulative ICP burden and daily ICP burden with HTS vs mannitol ICU length of stay was significantly lower for HTS 2-week mortality was not significant 	ICU length of stay (days ± standard deviation)	9.8 ± 0.6	8.5 ± 2.1	0.004
Conclusion	HTS given as bolus therapy was more effective than mannitol in lowering the cumulative and daily ICP burdens after severe TBI. HTS was able to lower number of ICU days but unable to show significant difference in 2-week mortality	2- week mortality	1:1 matched odds ratio 0.50 [95% CI 0.05-5.51]		0.56

Mangat et al., 2019: Hypertonic Saline vs. Mannitol

Design	A case-control study. (n=73)		Mannitol (n= 25)	HTS (n=25)	P-value
Purpose	Compare the effects of mannitol and HTS on the combined burden of high ICP and low CPP in patients with severe TBI	Cumulative ICP _{high} + CPP _{low} (% days ±standard deviation)	28.1 ± 26.9	8.8 ± 10.6	<0.01
Methods	 Inclusion: Age ≥ 16 and suffered a severe TBI in which they were hospitalized for at least 5 days Interventions: Mannitol or hypertonic saline Primary Outcomes: Combined cumulative and total ICP_{high} burden and CPP_{low} burden (%) ICP_{high} burden defined as percentage of days a patient had an ICP spike >25 mmHg CPP_{low} burden defined as percentage of days with a CPP <60 mmHg 				
		Total ICP _{high} + CPP _{low} (days ±standard deviation)	2.4 ± 2.3	0.6 ± 0.8	<0.01
Results	 Significant decrease in cumulative and total ICP_{high} + CPP_{low} for HTS compared to mannitol Significant decrease in total CPP_{low} for HTS vs Mannitol No difference in MAP <80 mmHg or vasopressor use 	Total CPP _{low} (days ±standard deviation)	3.6 ± 2.8	2.0 ± 1.7	0.03
Conclusion	HTS given as bolus therapy was more effective than mannitol in lowering the incidence and duration of the combination of raised ICP and reduced CPP in patients with severe TBI. HTS also lowered in the incidence and duration of reduced CPP				
		Duration of MAP <80 mmHg (h	32 [10-52]	28 [13- 46]	>0.99
Source: (Mangat et al., 2019)		[IQR]]	

Clinical Scenarios

- Clinical scenarios in which mannitol may have benefit
 - Hypervolemic patients in which diuresis effects from mannitol may benefit patient
 - Patient with concern for central pontine myelinolysis (e.g. severely low sodium levels)
- Clinical scenarios in which hypertonic saline may have benefit
 - Hypotensive patient as it can be used as a resuscitative fluid
 - Settings in which mannitol warmer is unavailable

Summary

- In patients with traumatic brain injury, preventing secondary injury through ICP control is one of the main focuses
- Cerebral hemodynamics are largely based on a fixed intracranial volume in which our body can compensate for after TBI
- Hyperosmolar agents, such as mannitol & HTS, are used to control ICP and both agents have their respective risks and benefits
- According to the most recent data, HTS may have an advantage over mannitol in terms of reduction of ICP & increase in CPP

Patient Case

A 58-year-old male arrives in the emergency department as a trauma due to motor vehicle collision. The patient is hypotensive with a blood pressure of 93/52 mmHg and is tachycardic at 105 beats per minute. On physical exam, the patient's pupils are asymmetric with his right pupil at 8 mm and the trauma team suspects impending herniation of the brain.

- The team asks for your recommendation for a hyperosmolar agent for this patient. What is your recommended hyperosmolar agent and dosing for this patient?
 - a. 1 g/kg IV bolus of mannitol over 5-10 minutes
 - b. 30 to 60 mL bolus of 23.4% hypertonic saline over 10 minutes
 - c. 15 mL bolus of 3% hypertonic saline over 30 minutes
 - d. 10 mL bolus of 7.5% hypertonic saline over 10 minutes
 - e. Patient does not require a hyperosmolar agent

- The team asks for your recommendation for a hyperosmolar agent for this patient. What is your recommended hyperosmolar agent and dosing for this patient?
 - a. 1 g/kg IV bolus of mannitol over 5-10 minutes
 - b. 30 to 60 mL bolus of 23.4% hypertonic saline over 10 minutes
 - c. 15 mL bolus of 3% hypertonic saline over 30 minutes
 - d. 10 mL bolus of 7.5% hypertonic saline over 10 minutes
 - e. Patient does not require a hyperosmolar agent

- According to Mangat et al., 2014, which of the following was **not** a statistically significant finding regarding hyperosmolar therapy?
 - a. Cumulative ICP burden
 - b. Two-week mortality
 - c. Daily ICP burden
 - d. None of the above were statistically significant
 - e. All the above were statistically significant

- According to Mangat et al., 2014, which of the following was **not** a statistically significant finding regarding hyperosmolar therapy?
 - a. Cumulative ICP burden
 - b. Two-week mortality
 - c. Daily ICP burden
 - d. None of the above were statistically significant
 - e. All the above were statistically significant

- According to Mangat et al., 2019, which of the following was a notable result regarding hypertonic saline when compared to mannitol?
 - a. Significant decrease in cumulative and total ICP_{high} + CPP_{low}
 - b. Significant decrease in total CPP_{low}
 - c. No difference in MAP <80 mmHg or vasopressor use
 - d. All of the above
 - e. None of the above

- According to Mangat et al., 2019, which of the following was a notable result regarding hypertonic saline when compared to mannitol?
 - a. Significant decrease in cumulative and total ICP_{high} + CPP_{low}
 - b. Significant decrease in total CPP_{low}
 - c. No difference in MAP <80 mmHg or vasopressor use
 - d. All of the above
 - e. None of the above

- Which of the following may be indications for use of hyperosmolar therapy?
 - a. Dilated/asymmetric pupils
 - b. Hemiparesis
 - c. Decorticate/decerebrate positioning
 - d. "Cushing's Triad"
 - e. All the above

- Which of the following may be indications for use of hyperosmolar therapy?
 - a. Dilated/asymmetric pupils
 - b. Hemiparesis
 - c. Decorticate/decerebrate positioning
 - d. "Cushing's Triad"
 - e. All the above

- Each of the following risks are associated with the correct hyperosmotic agent except?
 - a. Mannitol: Severe hypotension due to osmotic diuretic properties
 - b. Mannitol: Crystal precipitation
 - c. Mannitol: Rebound increased ICP due to leakage into brain
 - d. Hypertonic Saline: Central Pontine Myelinolysis
 - e. Hypertonic Saline: Severe hypotension due to osmotic diuretic properties

- Each of the following risks are associated with the correct hyperosmotic agent except?
 - a. Mannitol: Severe hypotension due to osmotic diuretic properties
 - b. Mannitol: Crystal precipitation
 - c. Mannitol: Rebound increased ICP due to leakage into brain
 - d. Hypertonic Saline: Central Pontine Myelinolysis
 - e. Hypertonic Saline: Severe hypotension due to osmotic diuretic properties

References

- Centers for Disease Control and Prevention. (2015). Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation. National Center for Injury Prevention and Control; Division of Unintentional Injury Prevention. Atlanta, GA.
- Centers for Disease Control and Prevention (2019). Surveillance Report of Traumatic Brain Injury-related Emergency Department Visits, Hospitalizations, and Deaths—United States, 2014. Centers for Disease Control and Prevention, U.S. Department of Health and Human Services.
- Carney, N., Totten, A., O'Reilly, C., Ullman, J., Hawryluk, G., & Bell, M. et al. (2016). Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. *Neurosurgery*, 1. doi: 10.1227/neu.00000000001432
- Weed L, McKibben PS. Experimental alteration of brain bulk. Am J Physiol. 1919;48:531-558.
- Mangat HS, Chiu YL, Gerber LM, Alimi M, Ghajar J, Hartl R. Hypertonic saline reduces cumulative and daily intracranial pressure burdens after severe traumatic brain injury. J Neurosurg. Nov 2014;122(1):1-9. PMID: 25380107.
- Cottenceau V, Masson F, Mahamid E, et al. Comparison of effects of equiosmolar doses of mannitol and hypertonic saline on cerebral blood flow and metabolism in traumatic brain injury. J Neurotrauma. 2011;28(10):2003-2012. PMID: 21787184.Lip G et al. *Chest*, 2018; 154(5):1121-1201
- Gu, J., Huang, H., Huang, Y., Sun, H., & Xu, H. (2018). Hypertonic saline or mannitol for treating elevated intracranial pressure in traumatic brain injury: a meta-analysis of randomized controlled trials. *Neurosurgical Review*, 42(2), 499-509. doi: 10.1007/s10143-018-0991-8
- Berger-Pelleiter, E., Émond, M., Lauzier, F., Shields, J., & Turgeon, A. (2016). Hypertonic saline in severe traumatic brain injury: A systematic review and meta-analysis of randomized controlled trials. *CJEM*, 18(2), 112-120. doi:10.1017/cem.2016.12
- Alnemari, A., Krafcik, B., Mansour, T., & Gaudin, D. (2017). A Comparison of Pharmacologic Therapeutic Agents Used for the Reduction of Intracranial Pressure After Traumatic Brain Injury. *World Neurosurgery*, *106*, 509-528. doi: 10.1016/j.wneu.2017.07.009
- Maguigan, K., Dennis, B., Hamblin, S., & Guillamondegui, O. (2017). Method of Hypertonic Saline Administration: Effects on Osmolality in Traumatic Brain Injury Patients. *Journal Of Clinical Neuroscience*, *39*, 147-150. doi: 10.1016/j.jocn.2017.01.025
- Major, E., O'Connor, P., & Mullan, B. (2014). Single bolus 30 % hypertonic saline for refractory intracranial hypertension. *Irish Journal Of Medical Science (1971 -), 184*(1), 159-165. doi: 10.1007/s11845-014-1080-9
- Sterns, R., Hix, J., & Silver, S. (2013). Management of Hyponatremia in the ICU. Chest, 144(2), 672-679. doi: 10.1378/chest.12-2600
- Colton, K., Yang, S., Hu, P., Chen, H., Stansbury, L., Scalea, T., & Stein, D. (2014). Responsiveness to therapy for increased intracranial pressure in traumatic brain injury is associated with neurological outcome. *Injury*, *45*(12), 2084-2088. doi: 10.1016/j.injury.2014.08.041

Thank you!

Additional questions may be directed to e-mail below.

Jeffrey C. Obciana, PharmD

PGY-2 Emergency Medicine Pharmacy Resident

JC2561@pharmacy.rutgers.edu