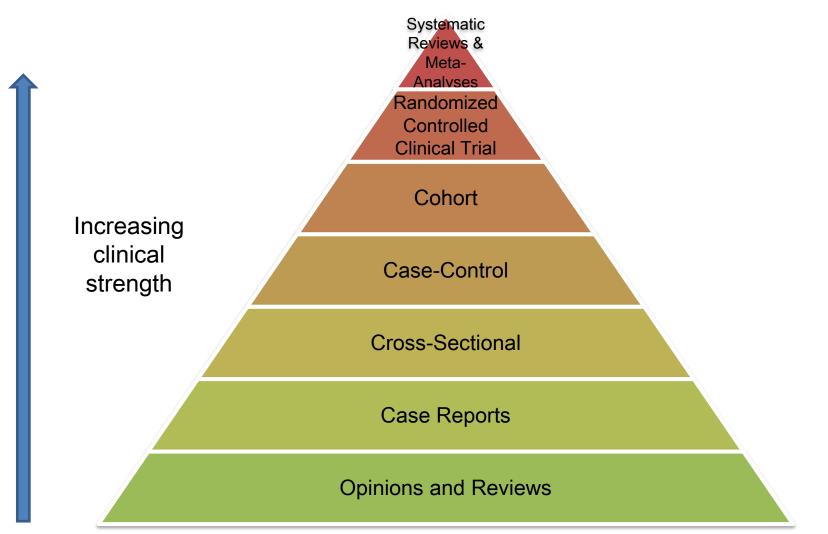
Biostatistics & Clinical Application Review A presentation for HealthTrust Members April 30, 2020

Joanna Stanton, PharmD PGY-2 Drug Information Resident Robert Wood Johnson University Hospital

Speaker Disclosures

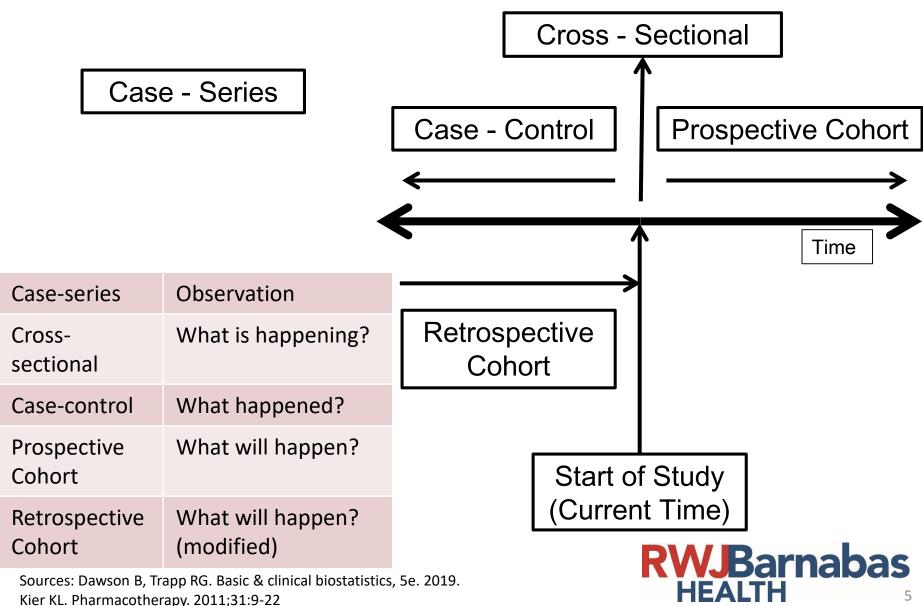
- The presenter has no real or perceived conflicts of interest related to this presentation.
- Note: This program may contain the mention of suppliers, brands, products, services or drugs presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes and should not be perceived as an endorsement of any particular supplier, brand, product, service or drug.

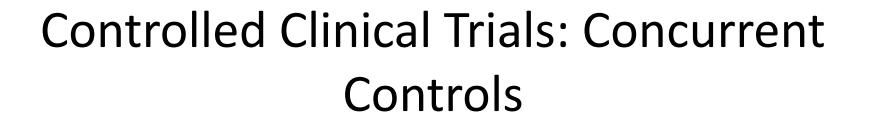


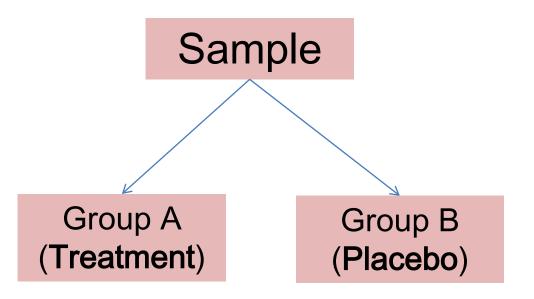
Objectives

- Describe different types of study design
- Complete statistical calculations including number needed to treat/harm, odds ratio and absolute risk reduction
- Evaluate trial results for statistical significance and clinical relevance

Research Types

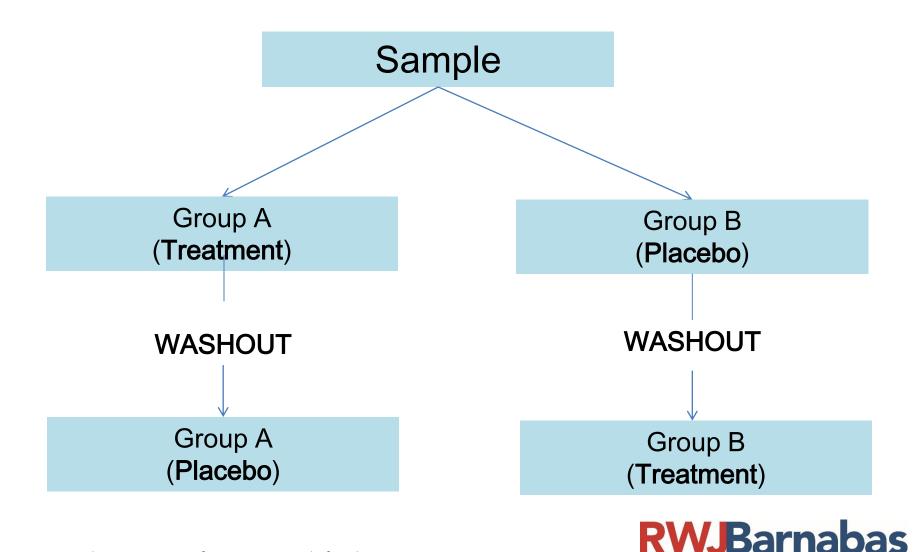


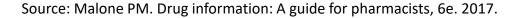

Source: Dawson B, Trapp RG. Basic & clinical biostatistics, 5e. 2019.


RWJBarnabas

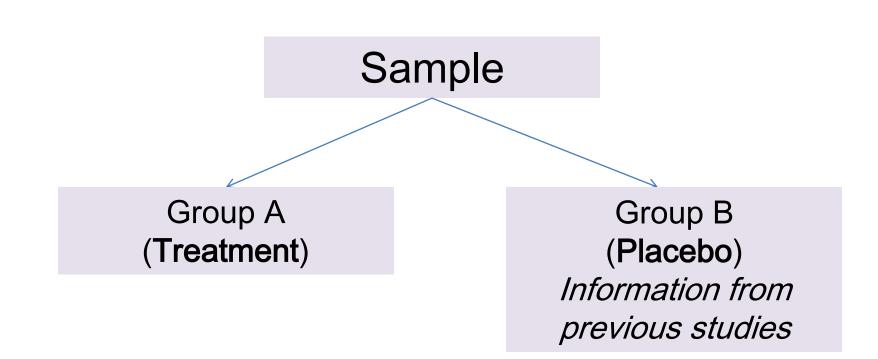
HEA

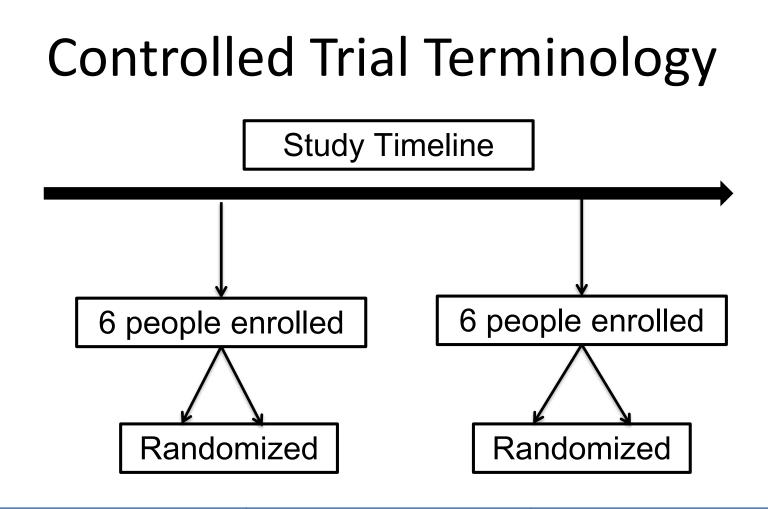
Observational Studies



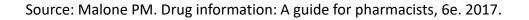


Source: Malone PM. Drug information: A guide for pharmacists, 6e. 2017.


Controlled Clinical Trials: Self Controls



ΗΕΔ


Controlled Clinical Trials: External Controls

Blinding	Randomization	Other
Single vs. Double	Cohort vs. block	Double-dummy

RWJBarnabas

ΗΡΔ

Trial Design

- Per-protocol
 - All patients who have completed the study and followed the study protocol
- Intent to treat
 - All patients randomized into the study
- Modified intent to treat
 - Similar to intent to treat, but patients have to have met the "modified" criteria (i.e. at least one dose of the study drug)
- As treated
 - Patients are placed into the study group of the drug they were in at completion

Source: Malone PM. Drug information: A guide for pharmacists, 6e. 2017.

Types of Data

Nominal	Ordinal	Continuous
Yes/No	Consistent order but no consistent magnitude	Constant and defined units of measure
Stroke vs. no stroke Death vs. no death BP > 140 mmHg vs. BP < 140 mmHg	Likert Scale Pain faces Cancer staging	Blood pressure Temperature Weight

Statistical Tests: Descriptive Statistics

Туре	Examples
Measures of	Mean (continuous data)
Central	Median (ordinal data)
Tendency	Mode (nominal data)
Measures of	Range, standard deviation (SD), variance –
variability,	(<u>continuous</u>)
dispersion,	Ratios, proportions, rates – (<u>ordinal and</u>
spread	<u>nominal</u>)

Source: Dawson B, Trapp RG. Basic & clinical biostatistics, 5e. 2019.

Parametric vs. Nonparametric

- Parametric
 - Normal distribution
 - Need a large enough sample (usually >30)
 - Continuous data
- Nonparametric
 - Nominal and ordinal data
 - Continuous data with non-normal distribution

Statistical Tests

Data Comparing	Parametric Tests	Non-parametric Tests
Mean difference between 2 groups (continuous)	Student <i>t</i> Test	
Difference between 2 groups (ordinal, nominal, non-parametric)		Mann-Whitney U Test X ² Test Fischer Exact Test
Difference between 3 or more groups	Analysis of Variance (ANOVA)	Kruskai- Wallis One-way ANOVA
Relationships between 2 or more variables	Regression and Correlation Linear Regression	Contingency Coefficient Logistic Regression
Survival analysis between 2 groups	Kaplan- Meier Method Cox Proportional Hazard Model	
Combining multiple studies	Meta-analysis	
Sources: Malone PM. Drug information: A gui Kier KL. Pharmacotherapy. 2011;31:9-22	de for pharmacists, 6e. 2017.	HEALTH 14

Important Study Numbers

Statistic	Definition
Alpha	Probability of having a type 1 error (probability that results were due to chance)
Beta	Used to calculate Power (Power = 1 – beta) Probability of having a type 2 error
Delta	Anticipating difference between the two groups Determined by authors
Ν	Calculated number of patients needed to detect a difference
Non- inferiority Margin	Acceptable difference between groups in a non- inferiority trial

RWJBarnabas

HEALTH

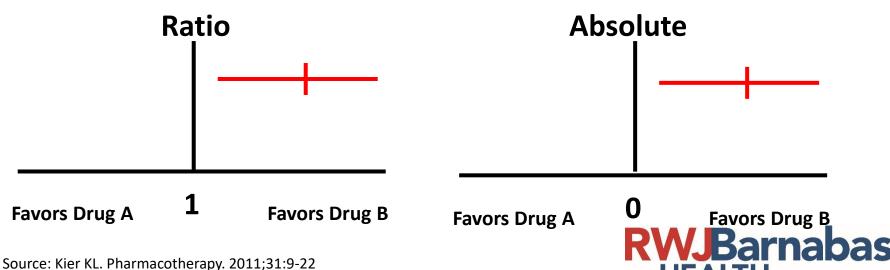
Types of Error

- Type I- rejected null hypothesis because of a statistically significant difference between the groups, however the null hypothesis is true

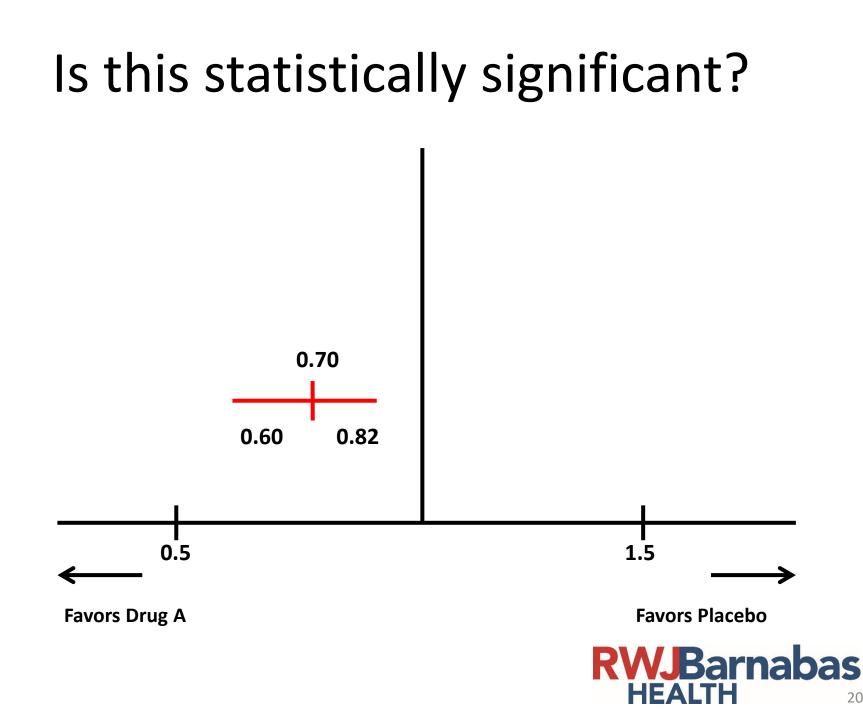
 False positive
- Type II- accept the null hypothesis because there is no statistically significant difference between the groups, however the null hypothesis is false
 - False negative

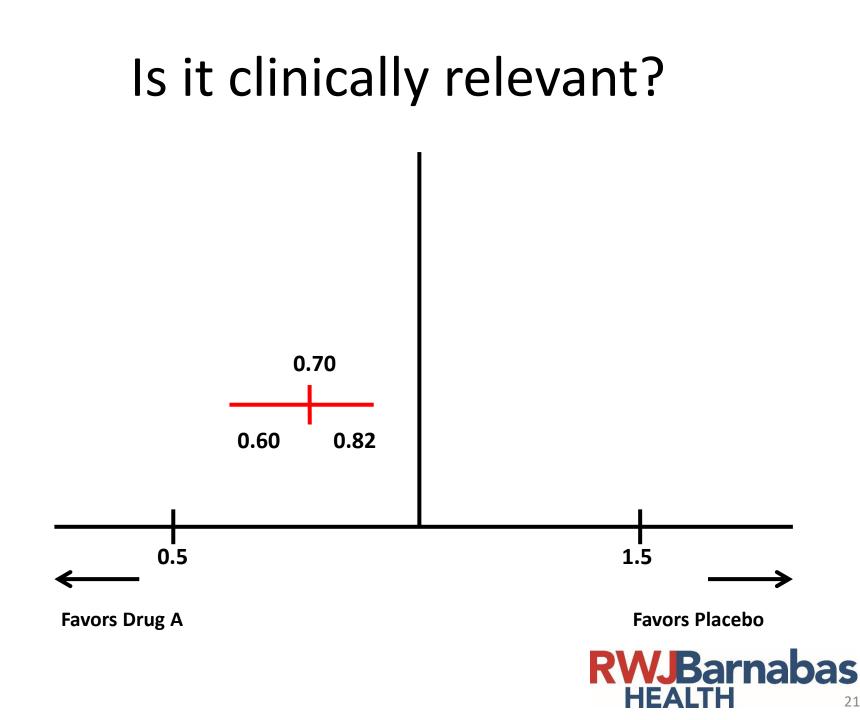
Types of Error

	False H ₀	True H ₀
Reject H ₀	X	Type I error
Accept H ₀	Type II error	Х

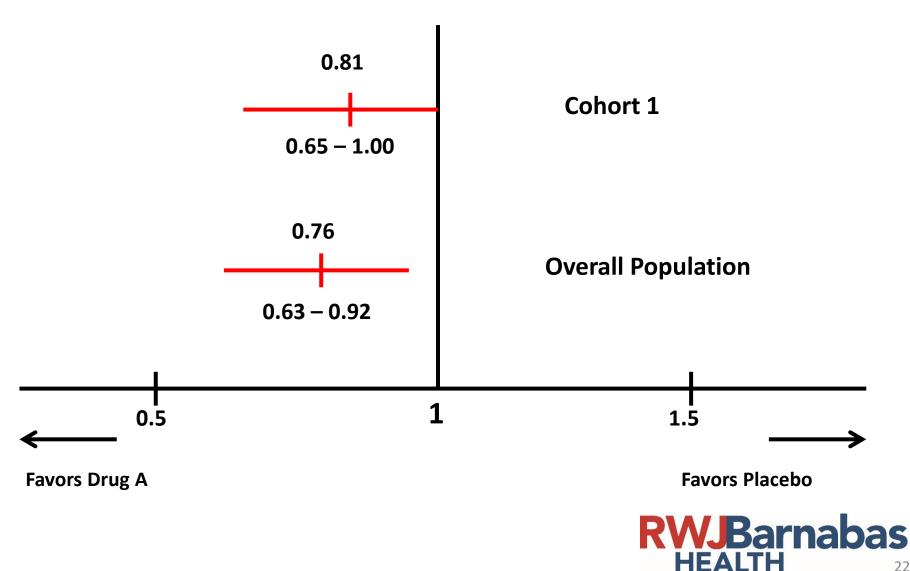

Source: Malone PM. Drug information: A guide for pharmacists, 6e. 2017.

Statistical Significance vs. Clinical Relevance


- Statistical significance
 - Meet statistical requirements
- Clinical relevance
 - More subjective
 - Evaluates statistical values and clinical relevance

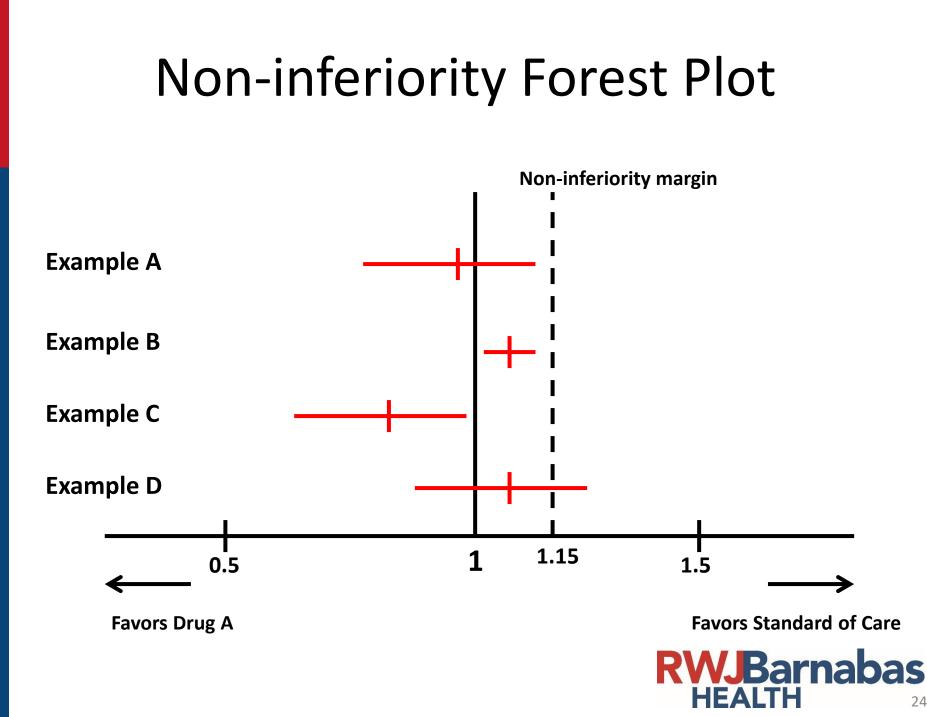

Statistical Significance: Forest Plot

- Results as ratio vs. absolute
 - Ratio: Line of NO significance = 1
 - Hazard ratio, relative risk, odds ratio
 - Absolute: Line of NO significance = 0
 - Absolute risk difference



19

Is this clinically relevant?


Subgroup Analysis

- Are there groups where spironolactone was better?
- Are there groups where placebo was better?

Death from all causes Median age <67 yr ≥67 vr LV ejection fraction <26% ≥26% Cause of heart failure Nonischemic Ischemic Median creatinine <1.2 mg/dl ≥1.2 mg/dl Use of digitalis No Yes Use of ACE inhibitor No Yes Sex Female Male Median potassium <4.2 mmol/liter ≥4.2 mmol/liter NYHA class ш IV Beta-blocker use No Yes Use of potassium supplements No Yes 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Source: Pitt B, et al. N Engl J Med. 1991;341:709-17.

Spironolactone Better

Non-inferiority Forest Plot Non-inferiority margin **Example A- Non-inferior Example B- Non-inferior Example C- Non**inferior **Example D- Inconclusive** 1.15 1 0.5 1.5 **Favors Standard of Care Favors Drug A** Barnabas

Source: Malone PM. Drug information: A guide for pharmacists, 6e. 2017.

Relative Risk

$RR = \frac{Probability of an event in study drug group}{Probably of an event in control group}$

Probability = # have event / total in group

Sources: Malone PM. Drug information: A guide for pharmacists, 6e. 2017. Kier KL. Pharmacotherapy. 2011;31:9-22

Relative Risk Example

	Had event	Did not have event
Study Group	61 A	632 B
Control Group	207 C	483 D

$$RR = \frac{A/(A+B)}{C/(C+D)}$$

 $\mathsf{RR} = \frac{61/(61+632)}{207/(207+483)} = \frac{61/693}{207/690} = \frac{0.09}{0.3} = \mathbf{\underline{0.3}}$

RWJBarnabas

Hazard Ratio

- Refers to whether "hazard" of the event is increased or decreased with the intervention
 - Same calculation as relative risk
 - HR is at a particular point in time whereas RR is over the entire time
 - RR or HR <1 = intervention lowered the risk</p>
 - RR or HR >1 = intervention increased risk of event
- Example: primary endpoint stroke, HR 0.75 (95% CI 0.68 0.84)
 - Patients in intervention group were 25% less likely to have a stroke
 - 1-0.75 = 0.25

Sources: Malone PM. Drug information: A guide for pharmacists, 6e. 2017. Kier KL. Pharmacotherapy. 2011;31:9-22

Odds Ratio

$OR = \frac{\text{Ratio of an event in study drug group}}{\text{Ratio of an event in control group}}$

Ratio = # have event / # don't have event in group

Source: Malone PM. Drug information: A guide for pharmacists, 6e. 2017. Kier KL. Pharmacotherapy. 2011;31:9-22

Odds Ratio Example

	Had event	Did not have event
Study Group	11 A	479 B
Control Group	237 C	305 D

$$OR = \frac{A/B}{C/D}$$

$$OR = \frac{11/479}{237/305} = \frac{0.02}{0.78} = \mathbf{\underline{0.03}}$$

Absolute Risk Reduction

- The difference in the percentage of subjects developing the adverse event in the control group versus subjects in the intervention group
 - ARR = Control Intervention
 - When no difference = 0
- Clinical trial comparing Superstatin and Placebo for the incidence of MI:
 - Placebo rate: 4%
 - Superstatin rate: 2%
- ARR = 4% 2% = <u>2%</u>

Source: Malone PM. Drug information: A guide for pharmacists, 6e. 2017. Kier KL. Pharmacotherapy. 2011;31:9-22

Relative Risk Reduction

 Estimates how many times greater (or lower) the risk of disease state development is in the patients exposed to the intervention compared to the control

$RRR = \frac{Incidence in Control - Incidence in Intervention}{Incidence in Control}$

Sources: Malone PM. Drug information: A guide for pharmacists, 6e. 2017. Kier KL. Pharmacotherapy. 2011;31:9-22

Relative Risk Reduction

• When rates are the same, RRR = 1

- Clinical trial comparing Superstatin and Placebo for the incidence of MI:
 - Placebo rate: 4%
 - Superstatin rate: 2%

• RRR =
$$\frac{4\% - 2\%}{4\%} = \frac{2\%}{4\%} = \frac{50\% (0.5)}{10\%}$$

Sources: Malone PM. Drug information: A guide for pharmacists, 6e. 2017. Kier KL. Pharmacotherapy. 2011;31:9-22

Number Needed to Treat

- Number Needed to Treat (NNT)
 - Number of people need to receive treatment to cause 1 episode of benefit
 - Smaller number = better
- Calculation:
 - NNT = $\frac{1}{ARR}$
 - ARR = Absolute risk reduction
 - Round answer <u>up</u>

Number Needed to Treat Example

- Study looking at medication to prevent death
 - 46% of patients on placebo died
 - 35% of patients on spironolactone died
- ARR = 46% 35% =

Number Needed to Treat Example

- Study looking at medication to prevent death
 - 46% of patients on placebo died
 - 35% of patients on spironolactone died
- ARR = 46% 35% = 11%

$$-NNT = \frac{1}{ARR}$$

Number Needed to Treat Example

- Study looking at medication to prevent death
 - 46% of patients on placebo died
 - 35% of patients on spironolactone died
- ARR = 46% 35% = 11%

$$-NNT = \frac{1}{0.11} = 9.09 = 10$$

Need to treat 10 patients to prevent 1 death

Number Needed to Harm

- Number Needed to Harm (NNH)
 - Number of people needed to receive treatment to cause 1 episode of harm
 - Larger number = better
- Calculation:

$$-NNH = \frac{1}{ARR}$$

- ARR = Absolute risk reduction
- Round answer <u>down</u>

In a trial for a novel chemotherapy agent, myocardial infarctions occurred in 32 of 598 patients in the experimental arm and 7 out of 596 patients in the control group.

In a trial for a novel chemotherapy agent, myocardial infarctions occurred in 32 of 598 patients in the experimental arm and 7 out of 596 patients in the control group.

- Rate of MI in control group = 7/596 = 1.17%
- Rate of MI in experimental group = 32/598 = 5.35%

- Rate of MI in control group = 7/596 = 1.17%
- Rate of MI in experimental group = 32/598 = 5.35%

• ARR = 5.35% - 1.17% = 4.18%

- ARR = 4.18%
- NNH = $\frac{1}{ARR}$

• NNH =
$$\frac{1}{0.0418}$$
 = 23.9

For every <u>23</u> patients treated, one will have a myocardial infarction.

Question 1

A trial is planning on including all patients randomized in the trial who complete at least 2 follow-up visits in the final efficacy analysis. This analysis is best described as being:

A. Per protocol

B. Intent to treat

- C. Modified intent to treat
- D. As treated

Response 1

A trial is planning on including all patients randomized in the trial who complete at least 2 follow-up visits in the final efficacy analysis. This analysis is best described as being:

A. Per protocol

B. Intent to treat

C. Modified intent to treat

D. As treated

Question 2

A clinical trial reports that Drug A is associated with risk of death at a rate of 32% compared to drug B which has a rate of death of 17%. Therefore, Drug B has an absolute risk reduction of _____% compared to Drug A.

- A. 3.1%
- B. 15%
- C. 17%
- D. 32%

Response 2

A clinical trial reports that Drug A is associated with risk of death at a rate of 32% compared to drug B which has a rate of death of 17%. Therefore, Drug B has an absolute risk reduction of ____% compared to Drug A.

- A. 3.1%
- **B. 15%**
- C. 17%
- D. 32%

Question 3

Drug A had a 5% mortality rate compared to placebo which had 10% (95% CI 0.84-2.91; p=0.2) Is this statistically significant? Clinically relevant?

- A. Statistically significant and clinically relevant
- B. Statistically significant, but not clinically relevant
- C. Not statistically significant, but clinically relevant
- D. Not statistically significant or clinically relevant

Response 3

Drug A had a 2% mortality rate compared to placebo which had 10% (95% CI 0.35-0.74; p=0.002) Is this statistically significant? Clinically relevant?

A. Statistically significant and clinically relevant

- B. Statistically significant, but not clinically relevant
- C. Not statistically significant, but clinically relevant
- D. Not statistically significant or clinically relevant

References

 Bryant PJ, McQueen CE. Literature Evaluation II: Beyond the Basics. In: Malone PM, Malone MJ, Park SK. eds. Drug Information: A Guide for Pharmacists. 6th ed. New York, NY: McGraw-Hill; http://accesspharmacy.mhmedical.com.proxy.libraries.rutgers.edu /content.aspx?bookid=2275§ionid=177198100. Accessed

, September 26, 2019.

- 2. Dawson B, Trapp RG. Basic & Clinical Biostatistics. 4th ed. New York, NY: McGraw-Hill; 2004.
- 3. Kier KL. Biostatistical applications in epidemiology. Pharmacotherapy. 2011;31:9-22.
- 4. Pitt B, Zannad F, Remme WJ, et al. The Effect of Spironolactone on Morbidity and Mortality in Patients with Severe Heart Failure. N Engl J Med. 1991;341:709-17.

Thank you!

Joanna Stanton, PharmD, PGY-2 Drug Information Resident js1609@pharmacy.rutgers.edu

