Tip of the Iceberg: Alterations of PK/PD in Patients Undergoing Targeted Temperature Management

A presentation for HealthTrust Members March 9, 2020

Drew Valentino, PharmD PGY1 Pharmacy Resident

Robert Wood Johnson | RWJBarnabas **University Hospital**

Speaker Disclosures

- The presenter has no real or perceived conflicts of interest related to this presentation.
- Note: This program may contain the mention of suppliers, brands, products, services or drugs presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes and should not be perceived as an endorsement of any particular supplier, brand, product, service or drug.

Learning objectives

- Compare pharmacokinetic parameters for normothermic and hypothermic patients
- Select monitoring parameters appropriate for targeted temperature management
- Identify medications likely to require adjustment due to targeted temperature management

Some Chilling Statistics

- 320,000 out-of-hospital cardiac arrests (OHCA) annually in the United States
 - 23% of these present with a shockable rhythm
 - Non-shockable rhythms have a poorer prognosis
- Remains a poor prognosis, survival to discharge in only ~7 – 11% of patients with OHCA and ~25% of patients arresting within the hospital

An icebreaker with targeted temperature management (TTM)

- Currently debated if the benefit is driven by therapeutic hypothermia (TH) vs. prevention of fever following cardiac arrest
 - Early trials showing benefits of TH allowed control group to become febrile
 - Terminology has shifted from TH to TTM
- Lack of reproducibility and conflicting evidence has led to an overall decline in the use of TTM
 - Clinicians overall unfamiliar with TTM
 - Opportunities for improvement in pharmacotherapy

TTM pathway and time course

Induction

 Rapidly reducing core temperature to a goal of 32 -36°C

Maintenance

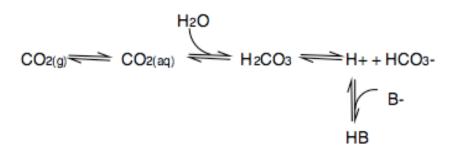
 Remaining at goal temperature for 12 – 24 hours

Rewarming

 Gradual increase to normothermia over 12 – 24 hours

Overview of TTM

- Hypothermic state decreases production of free radicals, preserving long-term neurologic function
- TTM has demonstrated improved neurological outcomes following cardiac arrest in patients cooled to a goal temperature of 32 - 36°C (89.6 – 96.8°F) for 12 – 24 hours
 - Best studied in patients remaining comatose, following return of spontaneous circulation (ROSC) following advanced cardiac life support (ACLS) interventions, initially presenting with a shockable rhythm (pulseless ventricular tachycardia or ventricular fibrillation)


Pharmacokinetics & TTM

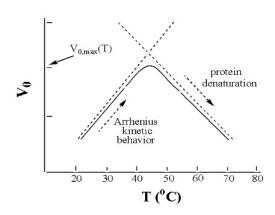
- Pharmacokinetics describes how drugs are <u>absorbed</u>, <u>distributed</u>, <u>metabolized</u> & <u>excreted</u> by the body
- Hypothermia has the potential to impact each of these phases, resulting in significant clinical effects
- An example of a drug-therapy interaction
- Overall lack of literature describing optimal medication changes in TTM

Absorption

- IV administration bypasses the absorption phase
 - May be considered the route of choice when possible for patients
- While not well characterized, it is expected that gut absorption is impaired during TTM secondary to increased transit times
 - Oral or rectal routes of administration are unreliable
- Little data exists examining alterations in subcutaneous, transdermal, and intramuscular routes of administration

Distribution

- A variety of physiological changes alter drug distribution, making generalization of effect difficult
- Examples of physiologic changes that must be taken into consideration:
 - Altered blood flow, blood shunting to vital organs
 - Blood pH decreases at lower temperatures
 - CO2 partial pressure increases
 - Protein binding is altered
 - It may be increased, decreased, or unchanged depending on the drug
 - Lipophilic penetration and tissue binding is decreased


Distribution

- Changes in vasodilatation and decreases in cardiac output have not been consistently proven to decrease volume of distribution at temperatures of 32 - 36°C
- Active transporters such as ABCB1 (P –glycoprotein) have exhibited decreased activity at 32°C
 - Typically, these pumps efflux drugs out of the cell, into a biological lumen for elimination
 - In vitro digoxin clearance was decreased by 50% in a study conducted by Jin et al.

Temperature Dependence

Metabolism

- Decreased hepatic blood flow
- Decreased enzymatic activity
 - Prodrugs are less effective (decreased transformation)
 - Decreased breakdown of drugs to inactive metabolites
- Hepatic extraction ratio (E_H) describes drug concentration pre- and post- hepatically
 - $E_H = (C_a C_v)/C_a$
 - C_a is the concentration in the hepatic arterial and mixed venous
 - C_v is the concentration in the hepatic venous blood
 - High extraction ratio (>0.7) are most altered by changes in blood flow
- Favorable to avoid drugs with hepatic metabolism

Metabolism

	Relevant Pharmacokinetic Properties					
Drug	Elimination Half-Life	Hepatic Extraction Ratio	Cytochrome P450 Metabolism	Renal Elimination	Transporters	
General anesthetics						
Propofol	30-60 min	High	2B	Yes	UDP- glucuronosyltransferase	
Dexmedetomidine	2-2.67 hr	High	2A6	Yes	None	
Midazolam	1.8-6.4 hr	Low/intermediate	3A4	Yes	None	
Opioids						
Fentanyl	2.5-6.5 min	High	3A4	Yes	None	
Remifentanil	3-10 min	n/a	n/a	Yes	n/a	
Meperidine	2.5-4 hr	High	none	Yes	None	
Nonopioids						
Acetaminophen	2 hr	Intermediate/high	2E1ª	Yes	None	
Buspirone	2-3 hr	High	3A4	Yes	None	
Paralytics						
Vecuronium	51-80 min	Low	3A4	Yes	p-glycoprotein	
Atracurium	20 min	n/a	n/a	n/a	None	

⁶Cytochrome P4502E1 metabolizes acetaminophen to N-acetyl-p-benzoquinone imine, which is then inactivated by glutathione conjugation. Antishivering activity qualification, as in reduction of shivering threshold: + (≤ 0.2°C), ++ (0.2−0.4°C),+ ++ (0.5−0.9°C), +++++(≥ 0.9°C).

Source: Šunjić KM, et al. Critical Care Medicine. 2015; 43(10):2228-2238.

Drugs Affected by P-glycoprotein

Substrates	Inducers	Inhibitors
Digoxin	Rifampin	Amiodarone
Loperamide	Carbamazepine	Ketoconazole
Colchicine	Phenytoin	Clarithromycin
Dabigatran	Dexamethasone	Cyclosporine
Morphine		Verapamil
		Quinidine
		Ritonavir

- This list is generalized and not specific to TTM, some studies report conflicting results about the effect of hypothermia on specific drugs such as quinidine
- Decreases in Pgp activity will cause higher uptake of drug into cells

Excretion

- Tubular secretion and reabsorption are enzymedependent processes
 - May be decreased in hypothermia
- Cold-induced diuresis has been described
 - Vasoconstriction from cold causes diuresis
- Decreases in renal clearance have not been consistently described
 - Creatinine synthesis is decreased
 - Cockcroft-Gault estimation may be unreliable

Assessment question #1:

- Which of the following pharmacokinetic parameters are likely to be decreased in a patient undergoing targeted temperature management in an ICU setting? (Select all that apply)
 - A: Absorption
 - B: Distribution
 - C: Metabolism
 - D: Excretion

Assessment response #1:

- Which of the following pharmacokinetic parameters are likely to be decreased in a patient undergoing targeted temperature management in an ICU setting? (Select all that apply)
 - A: Absorption
 - B: Distribution
 - C: Metabolism
 - D: Excretion

General Goals of Pharmacotherapy in TTM

- Prevention of <u>shivering</u>
 - Managed with neuromuscular blockade & medications with anti-shivering effect
- Maintain deep level of <u>analgosedation</u>
 - Titrate sedatives to a goal Richmond Agitation-Sedation Scale (RASS) of -5
 - Use of validated pain scoring systems to prevent longterm complications of pain
 - Critical-Care Pain Observation Tool (CPOT)
 - Behavioral Pain Scale (BPS)

Shivering

- Body's natural attempt to rewarm patient
 - Adaptive response to cold
 - Stimulated at 35.5°C, ceases at 33.5°C
 - May occur during induction or rewarming of patient
 - Shivering upon induction associated with better neurological outcomes
 - May undermine efforts to keep patient cool
- No single drug can be administered at safe, effective doses to reduce shivering threshold
 - Combinations must be used
 - Examination of individual drugs is warranted in TTM to determine a preferred standard

Snow Day! Opioids for Shivering

- Decrease shivering threshold
- Dose often limited by respiratory depression
- Anti-shivering effect best characterized with meperidine
 - Reduces shivering threshold by ~ 2°C
 - Acts synergistically with buspirone
 - Active metabolite: normeperidine
 - Risk of neurotoxicity
- Remifentanil has potent anti-shivering effect
- Fentanyl has a minor anti-shivering effect
 - Class effect can not be assumed for opioids

Non-opioids for Shivering

- Clonidine & dexmedetomidine ($\alpha 2$ agonists) both reduce shivering threshold
 - Dexmedetomidine clearance reduced by ~60% in hepatic impairment, unknown if this is seen in TTM
- Acetaminophen decreases the hypothalamic resting point for temperature homeostasis
 - Reductions of 0.2 0.4°C seen with 3g and 6g doses
- Buspirone
 - 5HT_{1A} partial agonism thought to provide anti-shivering effect
 - Typically given as 30mg po q8h
 - Studied in healthy male volunteers
 - Reduced shivering threshold by ~0.8°C

Paralytics for Shivering

- A well characterized, prolonged duration of action regardless of metabolic route
- Initial dose reductions of 25 50% should be implemented to prevent a prolonged duration of action
- Train-of-four (TOF) monitoring is shown to be altered in TTM
 - During rewarming, patients exhibit resistance to paralytic effects
 - Ex: TOF 4/4 despite same dose of paralytic during maintenance

Anti-shivering Efficacy

Drug	Anti-shivering activity
Paralytics	++++
Meperidine	++++
Propofol	+++
Fentanyl, morphine	+++
Clonidine	+++
Doxapram, nefopam	+++
Midazolam	++
Magnesium	++
Dexmedetomidine	++
Ondansetron	+

Source: Polderman KH, et al. Crit Care Med. 2009;37:1101-1120.

Paralytics Monitoring

- TOF monitoring is unreliable in TTM
- Titrate paralytics to clinical endpoints
 - Reduction of shivering response
 - Improved ventilator synchrony
- Intermittent boluses of paralytics are appropriate during rewarming
 - Avoidance of supratherapeutic concentrations
 - Shivering less likely to occur during maintenance, continuous infusions may not be needed
 - Excessive blockade may delay neuroprognostication

Bedside Shivering Assessment Scale (BSAS):

0 – None: No Shivering

1 – Mild: Shivering localized to neck/thorax, may be seen only as artifact on ECG or felt by palpation

2 - Moderate: Intermittent involvement of the upper extremities +/- thorax

3 - Severe: Generalized shivering or sustained upper/lower extremity shivering

- Validated 4 point scale used to assess shivering
- Columbia anti-shivering protocol proposes maintaining BSAS < 1 during induction

Source: Choi HA, et al. Neurocrit Care. 2011; 14(3):389-94.

Assessment question #2:

- Which of the following monitoring parameters is unreliable in a patient undergoing TTM?
 - A: Vancomycin trough level
 - B: TOF monitoring for paralytics
 - C: Blood glucose for patients receiving insulin
 - D: Serum creatinine

Assessment response #2:

- Which of the following monitoring parameters is unreliable in a patient undergoing TTM?
 - A: Vancomycin trough level
 - B: TOF monitoring for paralytics
 - C: Blood glucose for patients receiving insulin
 - D: Serum creatinine

Desirable Drug Qualities

- Short, predictable half life
 - Rapid onset & off-set
- Smaller volume of distribution
 - Less tissue penetration, more predictable kinetics
- Ease of monitoring
 - Monitoring for safety and efficacy of medication

Columbia Anti-Shivering Protocol

- Recommends baseline medications plus a stepwise approach to shivering management
- Baseline medications:
 - Acetaminophen 650 1000 mg q4-6h
 - Buspirone 30 mg q8h
 - Magnesium sulfate 0.5-1 mg/h IV
 - Goal magnesium level: 3 4 mg/dL
 - Skin counter warming at a maximum of 43 °C

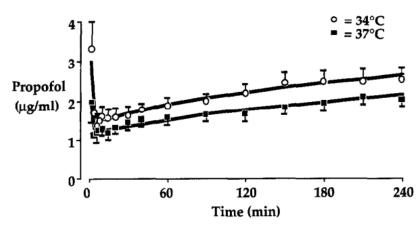
Source: Choi HA, et al. Neurocrit Care. 2011; 14(3):389-94.

Columbia Anti-Shivering Protocol

- First line: dexmedetomidine or opioids
 - Dexmedetomidine preferred for patients with underlying agitation
 - Dexmedetomidine 0.2 1.5 mcg/kg/hr
 - Opioids preferred for bradycardia or hypotensive patients
 - Fentanyl 25 mcg/hr or meperidine 50 100 mg IM/IV
- Second line: dexmedetomidine + opioids
- Third line: deep sedation with propofol
- Fourth line: neuromuscular blockade
 - This protocol prefers vecuronium (0.15mg/kg IV bolus)

Source: Choi HA, et al. Neurocrit Care. 2011; 14(3):389-94.

Propofol vs. Midazolam

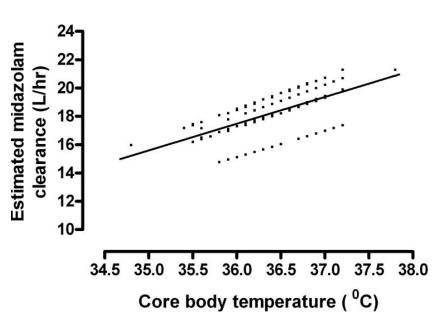

Outcome	Midazolam	Propofol	P value
Delayed awakening, n (%)	56 (29%)	5(6%)	<0.001
Ventilator free days at 28 days, n(IQR)	24 (22-26)	25 (22-26)	0.007
Pneumonia >48 hours post admission, n (%)	65 (20%)	28 (21%)	0.82
Duration of sedation, hours median (IQR)	34 (30-41)	40 (31 – 54)	0.0003
Renal replacement therapy, n(%)	151 (46%)	36 (27%)	<0.001

- Propofol/remifentanil (n=134)
 versus midazolam/fentanyl (n=
 326) for <u>sedation</u> of patients during
 TTM following cardiac arrest
 - Retrospective study using prospectively collected data
 - Management protocol only differed in sedatives and neuromuscular blocker used
- Awakening: three consecutive RASS scores > -2
- Delayed awakening: persistent unconsciousness > 48 hours post sedative discontinuation

Source: Paul M, et al. Resuscitation. 2018; 128:204-210.

Propofol

- Studied in 2 women and 4 men on two different study visits with induced core hypothermia (to a targeted 34°C) on one of the two visits
- Blood was sampled from radial arterial catheter to determine propofol concentrations over 2 hours via HPLC
- Propofol concentrations were increased in hypothermic patients
 - Largely driven by a decreased intercompartmental clearance


Figure 1. Actual propofol blood concentrations (μ g/mL) were significantly more in hypothermic (34°C) volunteers than in normothermic (37°C) volunteers. Predicted concentrations from the final pharmacokinetic model are represented by the solid lines. Elapsed time zero indicates start of the propofol infusion. Error bars indicate SEM.

Propofol

- Propofol concentrations increased in hypothermic patients
- Anticipate decreases in the required doses to maintain sedation goals
- Largest differences observed in the first 5 minutes of drug administration
- Drug did not distribute as well in the hypothermic patients

Midazolam

- A dangerous kinetic recipe
 - Large volume of distribution
 - High hepatic extraction ratio
 - Active metabolite

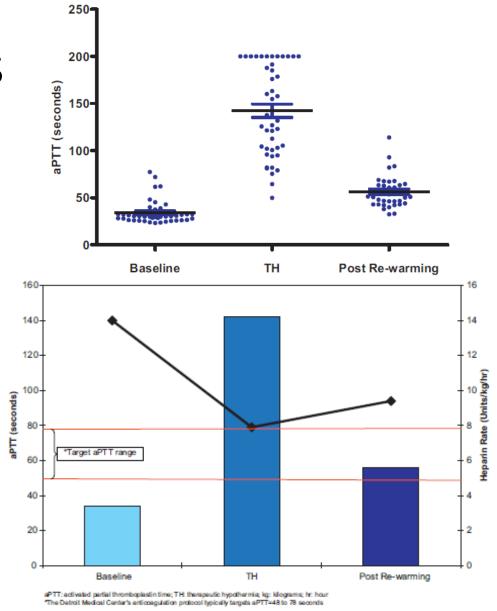
- Hostler et al. modeled midazolam kinetics in 6 healthy subjects aged 19 – 39 with no known comorbidities infused with cold saline for 4 hours
 - Identified changes in midazolam clearance when hypothermia was induced
 - Predicted an 11% decrease in midazolam clearance for every 1°C decrease in core temperature from 35.5°C

Fentanyl

- Commonly used in ICU settings to manage pain
 - Used in TTM to prevent shivering
- Extensively metabolized by CYP3A4
 - Well-stirred PK model predicts that decreased hepatic blood flow expected to cause a decrease in clearance, difficult to quantify changes
 - Bjelland et al. reported a 46% decrease in fentanyl clearance in 14 hypothermic patients matched to 8 normothermic controls
- Should be started at lower doses (25mcg/hr) to avoid overdosing & delayed awakening

Other TTM Considerations

- Cardiac output decreases
 - Initial rise in BP from vasoconstriction
 - Eventual decrease in output following cold diuresis
 - Oxygen demand and consumption also decreases
 - No effect on MAP
 - Heart rate slows
 - QTc prolongation is commonly observed (reports up to 670ms!)
 - Well documented safety of QTc prolongation during TTM
- Evidence supports the following hemodynamic parameters to improve neurologic outcomes:
 - MAP >65 mm Hg
 - CVP >15 mm Hg
 - permissive bradycardia (31 48 bpm)



Vasopressor use in TTM

- 920 patients analyzed in multicenter study at 36 ICUs in 10 countries from the Target Temperature Management trial
 - ↑lactate, similar MAP, ↓HR observed in TTM group versus normothermic group
 - Lower MAPs were associated with increases in mortality
- Increased doses of vasopressors were observed in TTM group
 - Data regarding specific vasoactive agents used was not available
 - Higher doses of vasopressors was associated with increased mortality at 30 days, but difference was not statistically significant
- Vasoactive agents without chronotropic activity should be utilized to meet these goals (phenylephrine)
 - May avoid arrhythmia while maintaining MAP

Bleeding Diathesis

- Hypothermia not recommended in actively bleeding patients
 - Relative contraindication
- Lower temperatures decrease activity of coagulation cascade
 - aPTT/PTT samples should be analyzed at 32 or 34 °C to reflect in vivo activity
- Bleeding is a enzymaticdependent process effected by hypothermia
 - Elevated aPTTs are commonly observed

Sources: Wahby KA, et al. Resuscitation. 2014; 85(4):533-537.

Šunjić KM, et al. Critical Care Medicine. 2015; 43(10):2228-2238.

Bleeding Diathesis

- Anticoagulation may be necessary depending on cause of cardiac arrest; ie: pulmonary embolism, myocardial infarction
 - Unfractionated heparin (UFH) preferred over low molecular weight heparins
 - UFH has a shorter half-life and is easily reversible with protamine
- Heparin has a saturable metabolism and clearance that is likely decreased in hypothermia
 - Wahby et al. found only 3/46 patients achieving goal aPTT following initial dosing of UFH
 - Dose was lower than standard dose for all 3 of these patients
 - Only 10/46 patients (22%) haf therapeutic aPTT at 24 hours
- Heparin rates expected to return to standard protocol
 ~24 hours after cessation of TTM

Sources: Wahby KA, et al. Resuscitation. 2014; 85(4):533-537.

Bleeding Diathesis

- Antiplatelet agents are commonly given as part of ACS and PCI treatment algorithms
 - <u>Clopidogrel</u> is a prodrug requiring GI absorption and liver metabolism to become pharmacologically active
 - Both processes are decreased in TTM
 - Kaufmann et al. found a decrease in plasma concentration of clopidogrel and metabolites in TTM group versus normothermic group that were given 600mg as a loading dose for patients undergoing PCI
 - <u>Aspirin</u> is a highly protein bound drug that exhibited decreased effect (most pronounced at 72 hours) in a study conducted by Pruller et al.
 - Reduced GI absorption, accelerated platelet turnover in inflammatory states may explain decreased efficacy
- Patients may remain at significant risk for acute stent thrombosis due to decreased efficacy of antiplatelet therapies

 Sources: Pruller F, et al. Ann Intensive Care. 2018;8:28.

Kaufmann J, et al. Resuscitation. 2016;102:63-69.

Electrolyte Disturbances

- Increase risk of arrhythmias if uncorrected
- Hypokalemia and hypomagnesemia are common complications of TTM that should be anticipated
 - Possibly due to increased renal excretion
- Beaulieu et al. found that 98% of patient experienced <u>hypokalemia</u> during TTM
 - Median of 45 mEq of potassium given each day
 - 30 % of patients remained hypokalemic despite repletion
 - 2% of patients became hyperkalemic
- Standard potassium repletion strategies may not be effective in TTM

Electrolyte Disturbances

- Some studies have observed hypokalemia is especially pronounced during induction phase
 - Effect is not consistent across all studies
- Hypomagnesemia may potentiate hypokalemia or prevent successful repletion
- Hypomagnesemia observed less frequently than hypokalemia
 - IV magnesium typically given as part of TTM protocol

Summary

- Use of IV administration bypasses GI absorption issues
 - GI absorption is decreased
- Distribution will likely be decreased
- Metabolism will likely be decreased
- Drugs with predictable kinetics are preferred
 - No hepatic clearance or metabolites
 - Low intermediate volume of distribution
 - Short acting
- TOF, aPTT, PTT monitoring will be altered and potentially unreliable throughout TTM

Assessment question #3:

- Which of the following medications would likely require a dosage adjustment during TTM?
 - A: Fentanyl
 - B: Rosuvastatin
 - C: Famotidine
 - D: Trimethoprim/sulfamethoxazole

Assessment response #3:

- Which of the following medications would likely require a dosage adjustment during TTM?
 - A: Fentanyl
 - B: Rosuvastatin
 - C: Famotidine
 - D: Trimethoprim/sulfamethoxazole

References

- 1. Beaulieu C, Kurczewski L. Beaulieu C, et al. Therapeutic Hypothermia and Temperature Management. 2018. URL: https://www.liebertpub.com/doi/10.1089/ther.2018.0037. Accessed: Februrary 17, 2020.
- 2. Bro-Jeppsen J, Annborn M, Hassager C, Wise MP, Pelosi O, et al. Hemodynamics and Vasopressor Support During Targeted Temperature Management at 33°C Versus 36°C After Out-of-Hospital Cardiac Arrest. Critical Care Medicine. 2015; 43(2): 318–327.
- 3. Choi HA, Ko SB, Presciutti M, Fernandez L, Carpenter AM, et al. Prevention of shivering during therapeutic temperature modulation: the Columbia anti-shivering protocol. Neurocrit Care. 2011; 14(3):389-94.
- 4. Hostler D, Zhou J, Tortorici MA, Bies, RR, Rittenberger JC, et al. Mild Hypothermia Altera Midazolam Pharmacokinetics in Normal Healthy Volunteers. Drug Metab Dispos. 2010; 38(5):781-788.
- 5. Hunter BR, Ellender TJ. Targeted temperature management in emergency medicine: current perspectives. Open Access Emerg Med. 2015;7:69-77.
- 6. Kaufmann J, Wellnhofer E, Stockmann H, Graf K, Fleck E, et al. Clopidogrel pharmacokinetics and pharmacodynamics in out-of-hospital cardiac arrest patients with acute coronary syndrome undergoing target temperature management. Resuscitation. 2016; 102:63-69.
- 7. Paul M, Bougouin W, Dumas F, Geri G, Champigneulle B, et al. Comparison of two sedation regimens during targeted temperature management after cardiac arrest. Resuscitation. 2018; 128:204-210.
- 8. Polderman KH, Herold I. Therapeutic hypothermia and controlled normothermia in the intensive care unit: Practical considerations, side effects, and cooling methods. Crit Care Med. 2009;37:1101-1120
- 9. Pruller F, Milke OL, Bis L, Fruhwald F, Scherr D, et al. Impaired aspirin-mediated platelet function inhibition in resuscitated patients with acute myocardial infarction treated with therapeutic hypothermia: a prospective, observational, non-randomized single-centre study. Ann Intensive Care. 2018; 8:28.
- 10. Šunjić KM, Webb AC, Šunjić I, Palà Creus M, & Folse SL. Pharmacokinetic and Other Considerations for Drug Therapy During Targeted Temperature Management. Critical Care Medicine. 2015; 43(10):2228-2238.
- 11. Wahby KA, Jhajhria S, Dalal BD, Soubani AO. Heparin dosing in critically ill patients undergoing therapeutic hypothermia following cardiac arrest. Resuscitation. 2014; 85(4): 533-537.
- 12. Wieruszewski P. Pharmacokinetic and Pharmacodynamic Considerations for Patients Undergoing Therapeutic Hypothermia. Pharmacy Times. March 2016. URL: https://www.pharmacytimes.com/contributor/patrick-wieruszewski-bs-pharmd-candidate-2016/2016/03/pharmacokinetic-and-pharmacodynamic-considerations-for-patients-undergoing-therapeutic-hypothermia. Accessed: January 15th, 2020.

Thank you!!

Drew Valentino, PharmD, PGY1 Pharmacy Resident, Robert Wood Johnson University Hospital

drew.valentino@rwjbh.org