

## Boston Medical Center **HEALTH SYSTEM**

## **Breaking Even During Price Hikes in the Intensive Care Unit**

A HealthTrust Member Webinar May 8, 2018

William R. Vincent III, PharmD, BCCCP Larren U. Suh, PharmD, MS









#### **Disclosures**

- This program may contain the mention of drugs or brands presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes and should not be perceived as an endorsement of any particular supplier, brand or drug.
- The presenters have no financial relationships with any commercial interests pertinent to this presentation.



#### Learning Objectives – PharmDs & Nurses

- Describe the impact of recent prescription medication price hikes
- Discuss the use of improvement science to break even during the intravenous acetaminophen, sodium nitroprusside, vasopressin and pyrimethamine price hikes
- Identify lessons learned and proactive approaches to overcome future drug pricing challenges

#### **Learning Objectives – Pharmacy Techs**

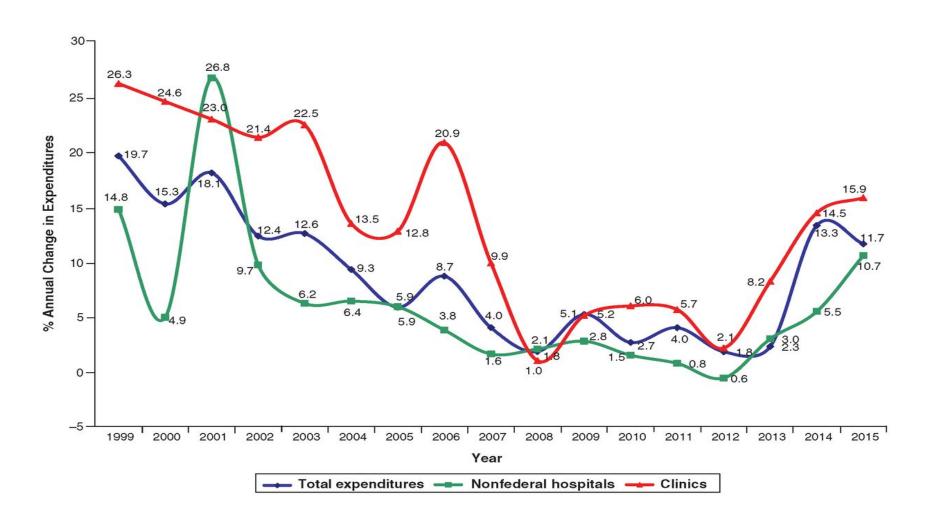
- Recall the impact of recent prescription medication price hikes
- Discuss inventory management strategies for combating price hikes
- Identify lessons learned from Boston Medical Center in overcoming drug pricing challenges

#### **Boston Medical Center**





- Fiscal Year 2017 Statistics
  - 567 Beds
  - 25,840 Inpatient Admissions
  - 133,529 ED Visits
- Patient Population
  - 57% under-served
  - 32% do not speak English as first language
- Largest safety net hospital in New England


#### **Outline**

- Briefly describe what we see
  - Why is this happening?
    - Regulatory Environment
    - Market Factors
    - Drug Shortages
  - Literature reported strategies

Case examples using improvement science

Lessons learned and developed tools

### **Prescription Expenditure Trends**



### **Drug Cost Drivers**

| Product Category | Clinics                    |                              |       |                   | Nonfederal Hospitals |                              |       |                   |
|------------------|----------------------------|------------------------------|-------|-------------------|----------------------|------------------------------|-------|-------------------|
|                  | Total<br>Percent<br>Growth | Percent Growth Due to Factor |       |                   | Total                | Percent Growth Due to Factor |       |                   |
|                  |                            | New<br>Products              | Price | Volume<br>and Mix | Percent<br>Growth    | New<br>Products              | Price | Volume and<br>Mix |
| All products     | 15.9                       | 3.1                          | 3.8   | 9                 | 10.7                 | 2.6                          | 7.6   | 0.5               |
| Injectables      | 13.9                       | 2                            | 3.4   | 8.5               | 11.3                 | 2.4                          | 7.3   | 1.6               |
| Brands           | 13.9                       | 1.8                          | 3.6   | 8.5               | 8.6                  | 1.2                          | 4.2   | 3.1               |
| Generics         | 7.3                        | 4.4                          | -1.7  | 4.6               | 16.5                 | 9.1                          | 6.4   | 1                 |
| Branded generics | 20.3                       | 1.7                          | 6.2   | 13                | 19.5                 | 0.3                          | 25.7  | -6.4              |
| Noninjectables   | 23.3                       | 7.2                          | 5.3   | 11                | 9.2                  | 3.4                          | 8.4   | -2.6              |
| Brands           | 26.4                       | 7.9                          | 6.4   | 12                | 10.4                 | 3.3                          | 11.4  | -4.3              |
| Generics         | 19.5                       | 8.3                          | -1.0  | 12                | 15.2                 | 7.4                          | 5.2   | 2.5               |
| Branded generics | 8.1                        | 0.8                          | 6.8   | 0.5               | 1.7                  | 0.1                          | 6.8   | -5.3              |

### **Drug Cost Drivers**

| Product Category    | Clinics                    |                              |       |                   | Nonfederal Hospitals |                              |       |                   |
|---------------------|----------------------------|------------------------------|-------|-------------------|----------------------|------------------------------|-------|-------------------|
|                     | Total<br>Percent<br>Growth | Percent Growth Due to Factor |       |                   | Total                | Percent Growth Due to Factor |       |                   |
|                     |                            | New<br>Products              | Price | Volume<br>and Mix | Percent<br>Growth    | New<br>Products              | Price | Volume and<br>Mix |
| All products        | 15.9                       | 3.1                          | 3.8   | 9                 | 10.7                 | 2.6                          | 7.6   | 0.5               |
| Injectables         | 13.9                       | 2                            | 3.4   | 8.5               | 11.3                 | 2.4                          | 7.3   | 1.6               |
| Brands              | 13.9                       | 1.8                          | 3.6   | 8.5               | 8.6                  | 1.2                          | 4.2   | 3.1               |
| Generics            | 7.3                        | 4.4                          | -1.7  | 4.6               | 16.5                 | 9.1                          | 6.4   | 1                 |
| Branded generics    | 20.3                       | 1.7                          | 6.2   | 13                | 19.5                 | 0.3                          | 25.7  | -6.4              |
| Noninjectables      | 23.3                       | 7.2                          | 5.3   | 11                | 9.2                  | 3.4                          | 8.4   | -2.6              |
| Brands              | 26.4                       | 7.9                          | 6.4   | 12                | 10.4                 | 3.3                          | 11.4  | -4.3              |
| Generics            | 19.5                       | 8.3                          | -1.0  | 12                | 15.2                 | 7.4                          | 5.2   | 2.5               |
| Branded<br>generics | 8.1                        | 0.8                          | 6.8   | 0.5               | 1.7                  | 0.1                          | 6.8   | -5.3              |

### Why the Concern?

- Unprecedented healthcare spend
  - Drug spend continues to significantly outpace inflation
- Limited resources, high focus cost center
- Disproportionally increased spend
  - Specialty drugs
  - Branded small molecule drugs
  - Generic drugs with recent significant percent increases

Source: Centers for Medicare and Medicaid Services. National health expenditures 2014 highlights. www.cms.gov/Research- Statistics-Data-and-Systems/Statistics-Trends-and-Reports/ NationalHealthExpendData/Downloads/highlights.pdf

## Regulatory Environment

### FDA and Unapproved Drugs

Federal Food, Drug, and Cosmetic Act (1938)

Kefauver-Harris Amendment (1962) Unapproved
Drugs
Initiative
(UDI) of
2006











Drug Efficacy Safety Initiative (DESI) Prescription Drug Wrap-Up (1984) AKA DESI-2

## **Unapproved Drug Initiative**

#### Intent

- Modernize safety/efficacy, Good Manufacturing Practices (GMP)
- ~5000 drugs affected
- Once approved, market exclusivity granted

#### **Effect**

- FDA does not consider cost when approving or granting exclusivity
  - Up to three years exclusivity for the original indication
  - Up to seven years exclusivity under the Orphan Drug Act
  - Prices rose exponentially
  - Drug Shortages

#### \*UDI Ex: Colchicine

- Ancient drug
- No prior review under amendments
- Labeling vague, little oversight
- Narrow therapeutic index, high patient variability
- Reported: 117 deaths
- Review/Approval
  - Granted 3 years exclusivity for Gout
  - Granted 7 years exclusivity for Familial Mediterranean Fever
- Price/Cost Differential
  - Price per tab: \$0.09 → \$4.85
  - Medicare/Medicaid Cost: \$1M → \$50M

## Market Economics

#### **Generic Manufacturers**

- Under Hatch-Waxman Act:
  - Generic manufacturers faced reduced regulatory constraint
  - Medications reduced cost in the overall market
- By 2009 the market was saturated
  - Competitive environment
  - Difficult to make a dollar
- Supply, Demand, Competition

#### **Re-branded Medications**

Company decides to pursue approval



Recoup investment cost through price increases

#### \*\*Market Economics: Pyrimethamine

- Pyrimethamine first developed in the 1950s
  - Treats Toxoplasma gondii infections
  - 2005 Cost: \$70 per course
- Market Factors
  - CorePharma purchases the right to produce in 2010
  - 2010 Cost: \$900 per course
  - Turing Pharmaceuticals purchases the right to product in 2015
  - 2015 Cost: \$31,500-\$73,500 depending on patient response
- No development costs to recoup

## Drug Shortages

### **Supply and Demand**

- Supply
  - Fragmented
  - Inconsistent and unpredictable
- Demand
  - Generally stays consistent barring:
    - Guideline/practice changes
    - Seasonality

# **Association Between Shortages and Price Hikes**

| Medication          | Drug Shortage<br>Period | % AWP Increase During Shortage |
|---------------------|-------------------------|--------------------------------|
| Ephedrine           | Mar 2014-Oct 2015       | 690                            |
| Furosemide inj.     | May 2010-May 2016       | 56-128                         |
| Glycopyrrolate inj. | Jan 2011- Mar 2015      | 633-2278                       |
| Hydralazine inj.    | Sep 2014-May 2016       | 921                            |
| Ketorolac           | Nov 2009-May 2016       | 251                            |
| Magnesium sulfate   | Mar 2011-Nov 2015       | 49-120                         |
| Sodium phosphate    | Dec 2012-Aug 2015       | 2220                           |

### **Strategies**

- Manage dispensing through systems
- Centralize stock and evaluate operational efficiencies
- Med Use Evaluations: Evaluate the literature against practice
- Evaluate contract opportunities
- Compound oral preparations

#### **Assessment Question #1**

Which of the following best represents the root cause for increased drug cost during the last three budget cycles?

- A. Truly generic oral tablets
- B. Re-branded injectable drugs
- C. Truly generic oral capsules
- D. Truly generic injectable drugs

#### **Response Question #1**

Which of the following best represents the root cause for increased drug cost during the last three budget cycles?

- A. Truly generic oral tablets
- B. Re-branded injectable drugs
- C. Truly generic oral capsules
- D. Truly generic injectable drugs

### **Summary – Part 1**

 Changes in FDA regulations and initiatives have increased cost to manufacturers

- In a capitalistic economy, profit drives private companies
- Competition is a balance

 The results have created increased costs in drug with little to no added benefit nor knowledge to the medical community

#### **Dollars and Sense in the ICU**

#### Different cost-related challenges

- Cost increases by 5-50 fold over 1 year
  - Vasopressin, norepinephrine, isoproterenol, calcitonin, ethacrynic acid, chlorothiazide
- Usual suspects
  - MDIs, inhaled nitrous oxide/epoprostenol, dexmedetomidine, rhVIIa, PCC, albumin

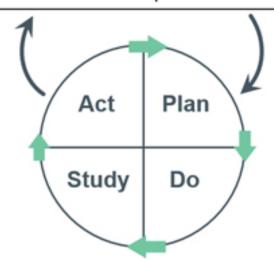
#### Unknown clinical impact

- Local survey of critical care pharmacists (n=36 New England hospitals) → less likely to recommend vasopressin due to increasing cost
- Norepinephrine use decreased by 20% across 26 hospitals during a 2011 shortage → 3.7% increase in absolute risk of death (NNT 27)

## **Application of Improvement Science to Price Hikes**

- Right tools for the job
  - Align projects with department and institutional goals
- New ASHP residency standards embrace QI
  - PGY1 Goal R2.2: Demonstrate ability to evaluate and investigate practice, review data, and assimilate scientific evidence to improve patient care and/or the medication-use system.
  - PGY2 CC Goal R2.2: Demonstrate ability to conduct a quality improvement or research project.
- Develop new knowledge and skills
  - Lean, six sigma for operations
  - Institute for Healthcare Improvement for clinical initiatives

# **Application of Improvement Science to Price Hikes**


- Set an aim
  - How good? For whom? By when?
- Build a team
- Describe the problem
  - Focus on local problem
  - Develop cause-and-effect and driver diagrams, current vs. ideal process maps
- Identify and implement interventions through small tests of change on your ICU patients
  - Learn from and share your experience
- Identify outcome, process, and balancing metrics
  - (Generally) no IRB → collect your own data, plot over time

#### Model for Improvement

What are we trying to accomplish?

How will we know that a change is an improvement?

What change can we make that will result in improvement?





#### **Local Context for Surgery ICU Price Hikes**

#### Surgery services

- Trauma and acute care, bariatric, colorectal, otolaryngology, cardiac, thoracic, vascular, orthopedic, neuro, urology, and plastics
- Medicine, ICU-focused pharmacy services
  - Trauma ICU (2004-present), surgical ICU (2012-present) including kidney transplant
  - Acute care, OR/PACU pharmacists (2017)
- Challenges with surgery
  - No clear training path for surgery pharmacists
  - Multiple teams with low census, resident/APP only rounds
  - Strong personalities, disagreements escalated to director
  - Perceive pharmacy as barrier to care, cost first

# Should You Add IV Acetaminophen to Formulary?

- Shift away from opioids as first-line towards adjuncts
  - Fast-track, enhanced recovery protocols emphasize reductions in opioids
  - 5.9-6.5% of patients newly prescribed opioids chronically after surgery
  - Advance directives can exclude opioids
- Limited IV options
  - Pain reduction by 50% over 4 hours
    - IV x1 = 36%, placebo = 16% (NNT 5)
  - Inconsistent impact on opioid use and opioid-related side effects, outcomes
    - Patients and providers tell a different story

Source: JAMA Surg 2017;152(3):292-8. JAMA Surg doi:10.1001/ jamasurg.2017.0504 www.statnews.com/ 2017/03/19/opioid-prescription-refuse/ Cochrane Database Syst Rev 2016;23(5): CD007126. Pharmacotherapy 2012;32(6):559–79. J Healthc Qual 2015;37(3):155-62

### IV Acetaminophen Timeline at BMC

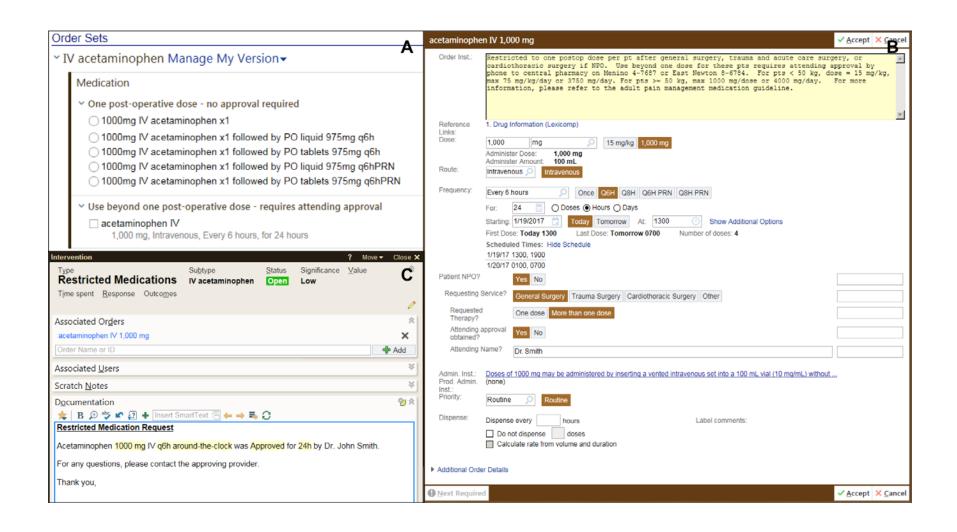
| Date            | Event                                                                                                                                                                                                                                               |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jun 2012        | 2 <sup>nd</sup> request for addition to formulary → accepted with stringent prescribing restrictions: 1) NPO/NPR and 2) limited to PONV, neurologic injuries, or ileus. Anesthesia approval needed for >24h duration.                               |
| Nov 2013        | MUE showed 90% adherence to criteria, projected \$14K annual expenditure                                                                                                                                                                            |
| Feb-Mar<br>2014 | Mallinckrodt Pharmaceuticals acquires IV acetaminophen<br>Revised prescribing restrictions to be less stringent: change to 48h<br>initial default duration, added to IV-to-PO pharmacist conversion<br>policy, pharmacist approval for therapy >48h |
| May 2014        | Transition to new EHR, added to all post-op order sets                                                                                                                                                                                              |
| Sep 2014        | Approximately \$55K spend in August 2014 and projected \$540K spend in fiscal year 2015 → QI team                                                                                                                                                   |

#### IV Acetaminophen QI Project Methods

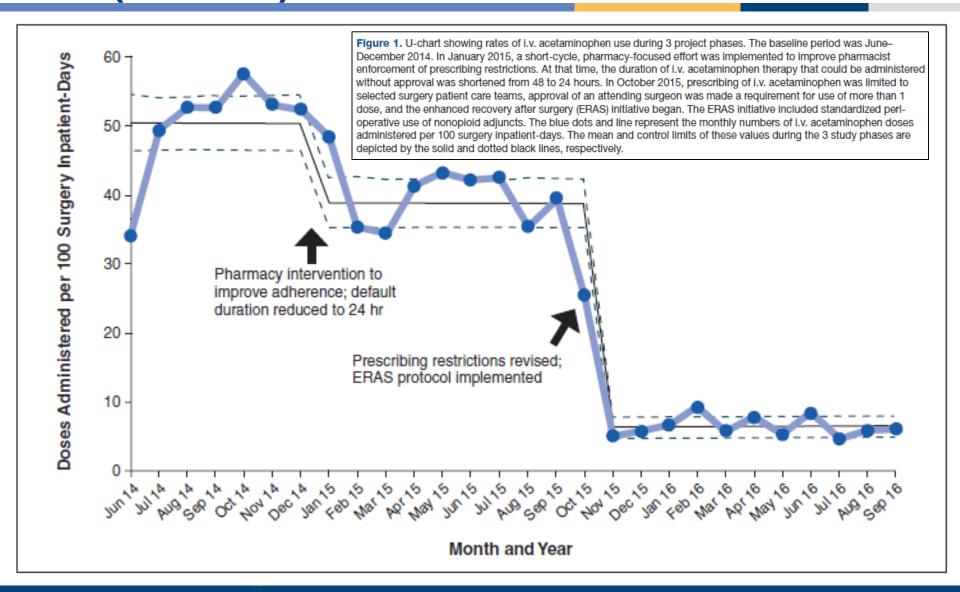
#### **Interventions**

- PGY1 resident outcome-based, IRB-approved research project (Jul 2014)
  - Less opioids but no impact on outcomes
- Short-cycle pharmacy initiative to improve adherence to prescribing restrictions (Dec 2014-Feb 2015)
- Revised prescribing restrictions via order set only, ERAS protocol implementation (Fall 2015)
  - 1 dose only, service limits, attending approval for >1 dose.

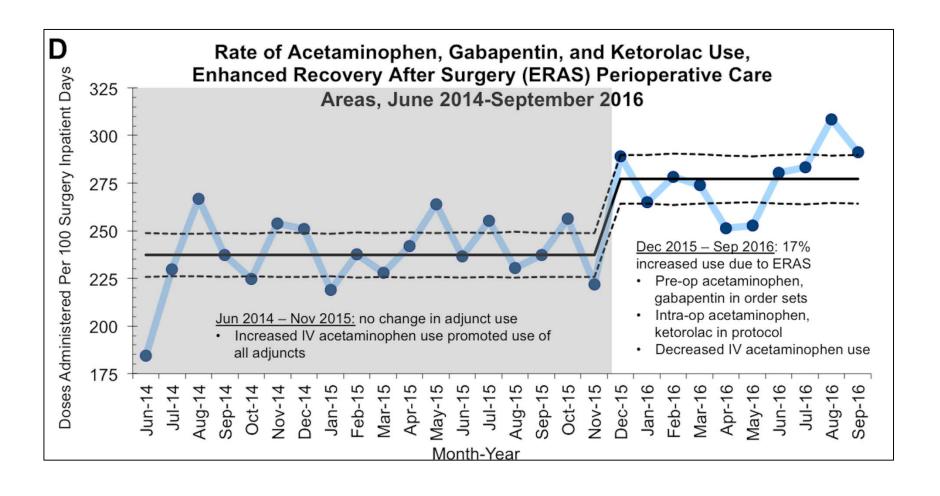
#### **Tools**


- Asana<sup>™</sup> for project and task management
  - Track timeline, feedback
- Access to real-time use and dispensing data
  - IV room doses prepared
  - Automated dispensing cabinet doses dispensed
  - Doses administered
  - Interventions
  - Cost from wholesaler
- QI macro for MS Excel™
  - Create run and statistical process control charts

## IV Acetaminophen QI Champions

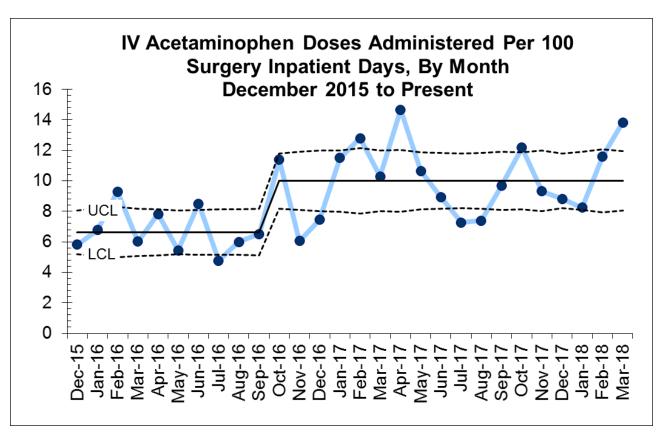






### **Information Systems Interventions**



# Outcome Metric – Rate of IV Acetaminophen Use (U Chart)




#### Process/Balancing Metric – Rate of Non-Opioid Adjunct Use (U Chart)



# **Sustain Success (for 2 More Years)**

- Revisit eligible services/patients
  - Omits neurocritical care, septic shock
- Revisit approval process?
  - Stop calling attending surgeons for approval for > 1 dose, clarify in CPOE
  - Strict NPR
  - OR/PACU only
  - 2020 countdown



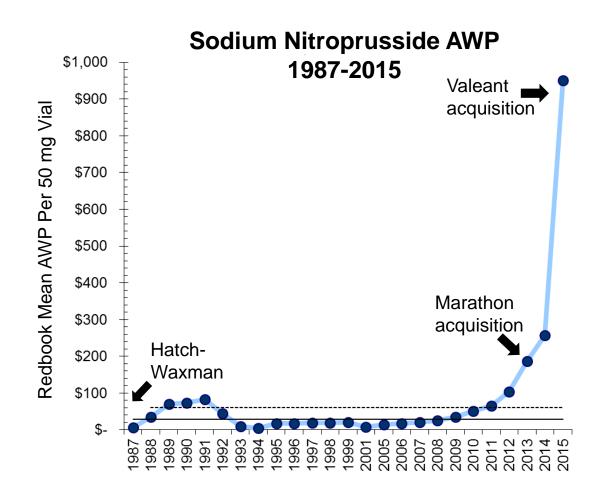
## IV Acetaminophen QI Project Summary

- Reduce IV acetaminophen annual spend to < \$100,000 in FY16
  - Short-cycle, incentivized pharmacy focus on prescribing restrictions
  - PGY1 outcomes evaluation
  - Enhanced recovery after surgery
  - Service-based, duration restrictions
- Reported data over time
  - Doses per 100 patient days, cost, interventions, all adjunct doses per 100 patient days
- Lessons learned
  - Better relationships with surgery and possibly better care
  - IHI model for improvement = tools to tackle future initiatives
  - Need to continue monitoring monthly, revisit restrictions and approval process

#### **Assessment Question #2**

Which of the following statements about improvement science is true?

- A. All PGY-1 residents must complete research projects according to the 2015 competency areas and goals
- B. All institutions require Investigational Review Board review of quality improvement projects
- C. Pre vs. post/before vs. after analysis is the best way to demonstrate improvement
- D. Representing data over time is typically preferred over summary statistics


### **Response Question #2**

Which of the following statements about improvement science is true?

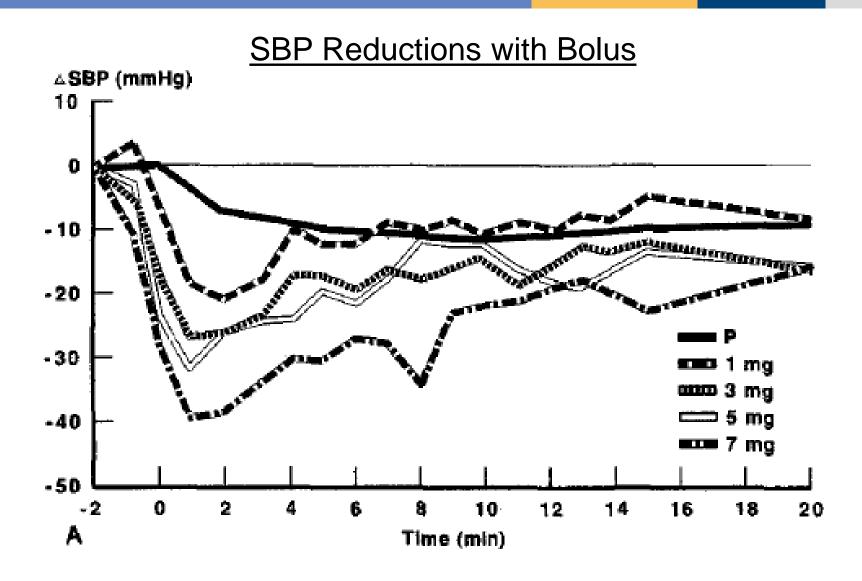
- A. All PGY-1 residents must complete research projects according to the 2015 competency areas and goals
- B. All institutions require Investigational Review Board review of quality improvement projects
- C. Pre vs. post/before vs. after analysis is the best way to demonstrate improvement
- D. Representing data over time is typically preferred over summary statistics

## Sodium Nitroprusside Re-Branding

- Spring 2015
  - Purchaser:
    "Hey Will, we need to start talking about Nipride. It's like \$800 per dose"
  - Me: "..."(inaudible muttering)



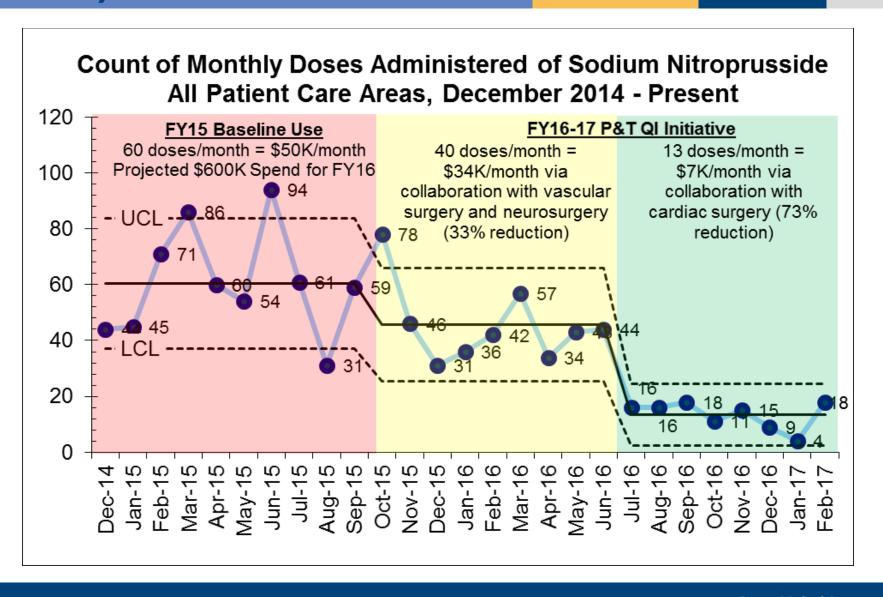
## The ICU Blood Pressure Players


| Category                   | Nitroprusside                                                                        | Nicardipine                                                                           | Clevidipine                                                                                                         |
|----------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Hemodynamic<br>Effects     | Reduces afterload and preload → may increase ICP                                     | Decreases afterload, minimal effect on preload → improved CPP, CO                     | Decreases afterload, minimal effect on preload → improved CPP, CO                                                   |
| Onset for hypertension     | <b>30-60 secs</b> , peak 2 mins                                                      | 60 secs, peak 2 mins (w/bolus), $\mathbf{t}_{1/2\alpha}$ = 3-15 min                   | <b>2-4 min</b> , peak 3 min                                                                                         |
| Distribution & Elimination | Vd = ECF, MetHgb<br>buffer 500 mcg/kg<br>SNP. <b>CN radicals</b><br>converted to TCN | Vd=7-8 L/kg, 95% highly protein bound. Hepatic metabolism → feces 40%, urine 60%      | Poor water solubility → 20% soy-based lipid emulsion 99% protein bound, Vd 0.17 L/kg. Rapid hydrolysis by esterases |
| Half-life                  | <b>2-4 minutes</b> (parent); 3 days (thiocyanate)                                    | $t\frac{1}{2}_{\beta} = 45 \text{ min}$<br>$t\frac{1}{2}_{\gamma} = 14.4 \text{ hrs}$ | $t\frac{1}{2}_{\beta} = 1 \text{ min (predominant)}$<br>$t\frac{1}{2}_{\gamma} = 15 \text{ min}$                    |
| Titration                  | Every 5 minutes                                                                      | Every 5-15 min; decrease dose by 2.5-5 mg/hr once target BP achieved                  | Double dose every 90 secs;<br>as BP approaches goal,<br>increase dose by less than<br>double every 5-10 mins        |

Source: J Anaesth Clin Pharmacol 2014;30:462-71. Circulation 1978;57(4):732-8 Drugs 2006; 66 (13): 1755-1782. Clin Pharmacol Ther 1990;47:706-18. Drugs 2014;74:1947-60

# SNP vs. NIC in Cardiac Surgery

| Reference                                                   | Patients & Study Design                                                     | Intervention & Comparator                                                                       | Outcomes                                                                                                                                | Conclusions/<br>Comment                                                                   |
|-------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| J Cardio-<br>thorac Vasc<br>Anesth<br>1991;5(4):3<br>57-61. | Open, randomized,<br>multicenter trial<br>N=74 CABG pts<br>with post-op HTN | NIC 2.5-12.5 mg<br>bolus followed<br>by 2-4 mg/hr<br>infusion, vs. SNP<br>0.5-6.0<br>mcg/kg/min | NIC>SNP: goal MAP < 90 mmHg achieved more quickly, ♥ SVR, 2x fewer dose adjustments/24hr SNP>NIC: ↑ HR, 400 mL more blood transfused    | Bolus helped NIC achieve BP target faster  NIC is an alternative to SNP                   |
| J Cardio-<br>thorac<br>Anesth<br>1989;3(6):7<br>00-6.       | Prospective cohort N=45 CABG pts                                            | NIC 3 mcg/kg/min<br>(≈ 12.5 mg/hr) vs.<br>SNP 1 mcg/kg/min<br>started before<br>surgery         | Comparable MAP control  ✔ PAP with SNP prior to sternotomy Myocardial ischemia: NIC (9%) vs. SNP (24%) (from induction to start of CPB) | High initial NIC infusion NIC may be a suitable alternative after coronary artery surgery |
| Am J<br>Cardiol<br>1989;64(15)<br>:22-7H.                   | Prospective RCT<br>N=120 CABG pts                                           | 1:1:1 = <b>NIC 3 mcg/kg/min</b> vs. SNP 1 mcg/kg/min vs. no vasodilator                         | Comparable MAP control<br>Myocardial ischemia: NIC<br>(10%) vs. SNP (25%) vs.<br>28% (control)                                          | High NIC infusion rate                                                                    |


#### Nicardipine Bolus Pharmacodynamics



### **BMC's Response to SNP Price Hike**

- Consider alternatives revisit clevidipine
- Pharmacy operations modifications
  - Add NIC to ADCs, on override to ICUs
  - Decrease SNP inventory
  - ADC alerts for preparation instructions for nursing, do not give NIC bolus IVP
- Systems improvements
  - Do not automatically dispense SNP from post-op order sets
  - Add NIC bolus from bag, update administration instructions, decrease lower rate limit to 2.5 mg/hr
  - Update smartpumps for ORs and ICUs
- Education about the SNP million dollar sweepstakes

# Outcome Metric – SNP Doses Dispensed (C Chart)



# **Lessons Learned-Improvement Science as a Tool**

Identify an issue

Collect baseline data

Driver diagram

Define metrics

Track metrics as data over time

# Who Will Be Ready for the Next Price Hike?

#### **Clinical Pharmacists**

- Relationship with prescribers
- Patient, product, process knowledge, and empathy
- Build leadership experience
- Track real-time data (frontline feeling, feedback, observations & patient encounters/med use)
- Demonstrate your value to your team

#### **Pharmacy Managers**

- Administrative and political connections
- Negotiating skills/experience
- Purchasing data and trends and experience
- Ability to negotiate with distributors
- Important scope and perspective (forest, not just trees)

#### **How We Broke Even**

- Budget
- Strategies
- Outcomes

Relationships

#### **Assessment Question #3**

Which of the following statements best describe why clinical pharmacists should lead initiatives to combat price hikes?

- A. Knowledge of product, process and patient
- B. Ability to negotiate with distributors
- C. Administrative and political connections
- D. Expertise in analyzing purchasing data

## **Response Question #3**

Which of the following statements best describe why clinical pharmacists should lead initiatives to combat price hikes?

- A. Knowledge of product, process and patient
- B. Ability to negotiate with distributors
- C. Administrative and political connections
- D. Expertise in analyzing purchasing data

## **Summary**

- Price hikes and shortages in the ICU are common, relevant, and largely driven by the unapproved drugs initiative
  - Hospital budgets cannot keep up with this inflationary rate
- Improvement science can help demonstrate and sustain success with IV acetaminophen, sodium nitroprusside, and other cost-focused initiatives
- Critical care pharmacists should lead team efforts to mitigate patient and financial harm due to price hikes and shortages

## **Special Thanks**

#### Collaborators

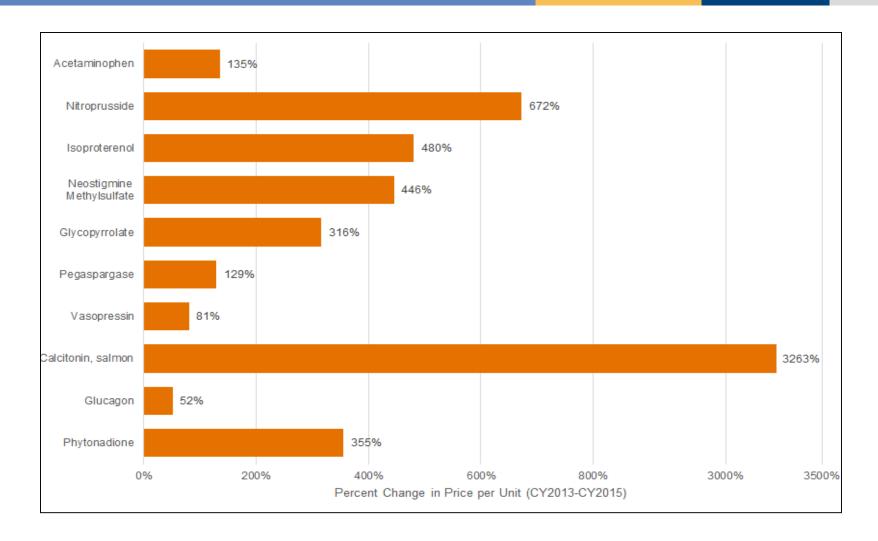
 Nicole Curtis, Paul Huiras, Jennifer Empfield, Jason Mordino, Lindsay Arnold, Kevin Horbowicz, Je Lee and the Willow team

#### Champions

 David McAneny, Keith Lewis, Mauricio Gonzalez, Karl Karlson, Alik Farber, Nirav Patel, Jeanette Lee, Courtney Takahashi, Joy Vreeland, David Twitchell

#### For more information

- william.vincent@bmc.org
- <u>larren.suh@bmc.org</u>




# Boston Medical Center **HEALTH SYSTEM**



#### **Additional Information**

#### **Selected Percent Increases**



Trends in hospital inpatient drug costs. National Opinion Research Center. October 11, 2016. Source: www.aha.org/content/16/aha-fah-rx-report.pdf

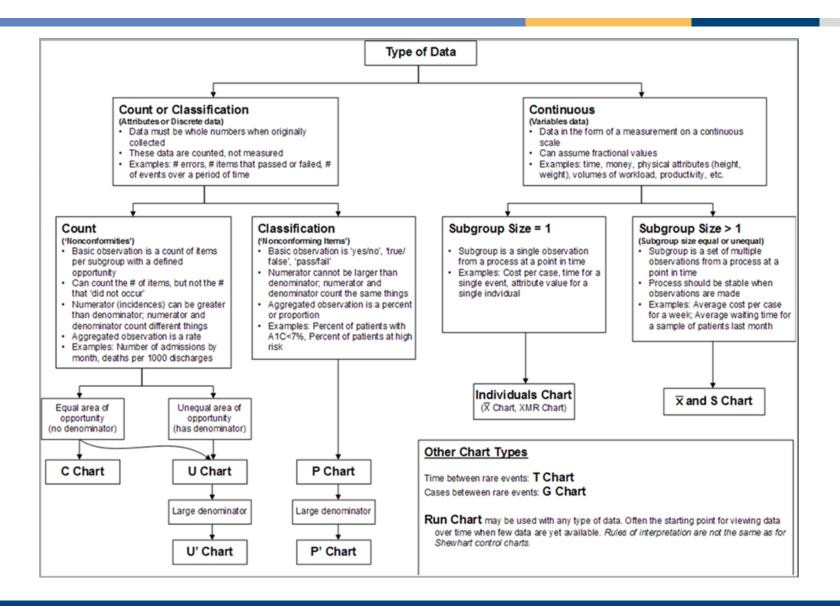
# \*UDI Ex: Neostigmine

| Top Older Agents with High Growth in 2015 |                                  |                             |  |  |  |  |
|-------------------------------------------|----------------------------------|-----------------------------|--|--|--|--|
| Drug <u>a</u>                             | 2015 Expenditures (\$ Thousands) | Percent Change<br>From 2014 |  |  |  |  |
| Vasopressin                               | 160,977                          | 697.7                       |  |  |  |  |
| Neostigmine                               | 288,273                          | 409.2                       |  |  |  |  |
| Isoproterenol                             | 219,748                          | 275.7                       |  |  |  |  |
| Hydroxyprogesterone                       | 191,250                          | 270.9                       |  |  |  |  |
| Hydroxychloroquine                        | 506,761                          | 237.6                       |  |  |  |  |
| Flucytosine                               | 49,157                           | 126.4                       |  |  |  |  |
| Flecainide                                | 88,321                           | 123.8                       |  |  |  |  |
| Nitroprusside                             | 218,022                          | 112.8                       |  |  |  |  |

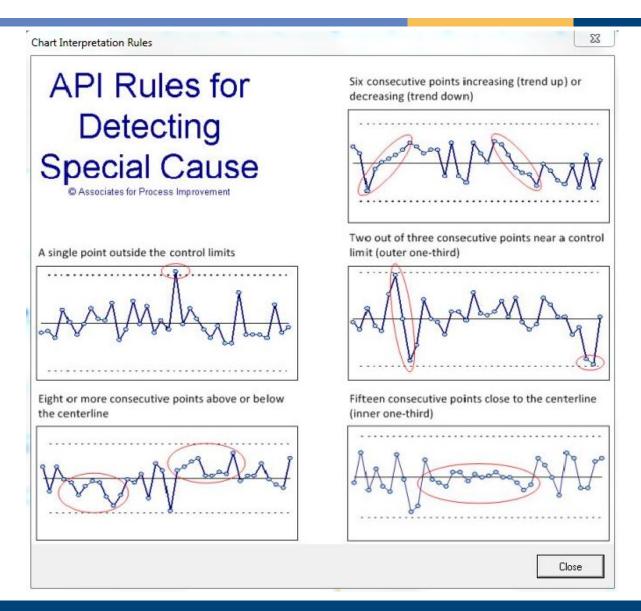
# **UDI Ex: Neostigmine**

- Received approval for the neuromuscular blockade reversal indication
- Used for decades off label
- Upon approval in 2013
  - Originally this was an Eclat Pharmaceuticals product
  - Manufacturer urged the FDA to disallow all generic competitors of the product
  - Letter claimed that other manufacturers lacked safety data and posed a safety hazard
- Net change from 2014 to 2015: 5%
- National Opinion Research Center Findings:
  - "Drug price increases appear to be random and inconsistent from one year to the next"

## \*\*Manufacturer Consolidation and Rights


- Nitroprusside and isoproterenol
  - Originally Hospira products
  - Sold to Marathon (price increase #1)
  - Sold to Valeant (price increase #2)

#### Neostigmine


- Eclat sold to Flamel Technologies in 2012
- Flamel merged with Avadel Pharmaceuticals in 2016
  - Avadel business strategy:
    - Development patent protected products
    - Identification of Unapproved Marketed Drugs
    - Acquisition of commercial/late stage products

Source: Annual Report 10-K. United States Securities and Exchange Commission. Avadel Pharmaceuticals December 31, 2016.

#### **Statistical Process Control Chart Selection**



#### Rules for Detecting Nonrandom Change

