Phenobarbital for Moderate to Severe Alcohol Withdrawal in the Acute Care Setting

May 30, 2017

Presented by: Karen Michaud, PharmD, BCPS Pharmacy Clinical Manager/ Coordinator Portsmouth Regional Hospital

Chris Devine, PharmD, BCPS Critical Care Pharmacist Portsmouth Regional Hospital

Disclosure

Today's presenters have nothing to disclose

Objectives

- Explain patient management and treatment goals when treating moderate to severe alcohol withdrawal symptoms with phenobarbital
- Describe the mechanism of action of phenobarbital in treating patients with alcohol withdrawal symptoms
- Describe potential protocols to decrease the amount of dexmedetomidine and benzodiazepines that are used in their institutional settings for treating patients with alcohol withdrawal symptoms

Alcohol Abuse

- Approximately 7% of US population abuses or is dependent on alcohol.
 - 10% of patients will experience seizures
 - 5% experience delirium tremens
- 20% of patients admitted to the in-patient units
- Patients often seek medical attention in Emergency departments for complications directly related to alcohol use.
 - 16% surgical patients
 - 31% of trauma patients
 - 25-35% MVAs

Effects of Alcohol Exposure and Withdrawal

Symptoms of Alcohol Withdrawal

Symptoms	Hours
Minor symptoms: Insomnia, tremulousness, mild anxiety, GI upset, headache, diaphoresis, palpitations, anorexia	6 – 12 hours
Alcoholic hallucinosis: visual, auditory, or tactile hallucinations	12 – 24 hours
Withdrawal seizures: generalized tonic-clonic seizures	24 – 48 hours
Alcohol withdrawal delirium (delirium tremens): hallucinations (predominately visual), disorientation, tachycardia, hypertension, low-grade fever, agitation, diaphoresis	48 – 72 hours

CNS Alcohol Withdrawal Physiology: GABA vs. Glutamate

- Two major types of neurotransmitter systems in the CNS:
 - γ aminobutyric acid (GABA) \rightarrow inhibitory of electrical activity
 - Glutamate → Excitatory impact on electrical activity
- > 80% of neurons in the brain use GABA or glutamate
- Alcohol agonizes GABA receptors and blocks glutamate receptors

CNS Alcohol Withdrawal Physiology: GABA vs. Glutamate

GABA and Glutamate – Chronic Alcohol Use

Nejad, unpublished

CNS Alcohol Withdrawal Physiology: GABA vs. Glutamate

GABA and Glutamate - Abrupt Cessation of Alcohol

GABA activity

Glutamate activity

Nejad, unpublished

Effects of Alcohol Exposure and Withdrawal

GABA_A Receptor Pharmacology

- 16 different GABA_A receptors \rightarrow 9 in brain based upon subunit composition
- GABA related symptoms:
 - Sweating, tremors, anxiety and sleep alternations
- 1-4 Benzodiazepines
 - Require GABA to bind
 - Increase the frequency CI channel opening
 - Affinity guided by α unit selectivity
- Barbiturates
 - Does NOT require GABA to bind
 - Increase time CI channel is open
 - Attenuate BZD and GABA binding

Olsen RW, et al. *Pharmacol Rev.* 2008 Sep;60(3):243-60. Sankar R. *CNS Drugs.* 2012 Mar 1;26(3):229-44. Olsen RW, et al. *Neuropharmacology.* 2009 Jan;56(1):141-8. Krystal JH, et al. *Arch Gen Psychiatry.* 2006 Sep;63(9):957-68.

Select GABA agonists for Alcohol Withdrawal

Variable	Midazolam	Lorazepam	Phenobarbital	Propofol
Area of Use	ICU	All	All	ICU
Route	IV	IV/PO	IV/IM/PO	IV
Typical Dose	1-3 mg q1hr	1-4 mg q4hrs	65-320 mg Q6hrs	0-5 mg/kg/hr
IV onset (min)	1-5	5-20	5	10-50 seconds
IM onset (min)	15	30	20	-
Duration	Short	Medium	Long	Really Short
Prolonged in renal failure	Yes	No	Yes	No
Prolonged in hepatic failure	Yes	Yes	Yes	No
Elimination T1/2	1-4 hrs	12-14 hrs	1.5-4.9 days	1.5-12.4 hrs
Active Metabolite	Yes	No	No	No
IV formulation toxicity	None	Propylene glycol	Propylene glycol	Lipid elimination

Prophylene Glycol Administration

Drug	Concentration	Amount of propylene glycol (mg/ml)	Daily propylene gycol exposure (g)*
Lorazepam	4	830	99.6
Phenobarbital	130	702.4	2.1

*Based on a lorazepam infusion of 20 mg/hr and phenobarbital dosage of 130 mg 3 times a day

Phenobarbital's Mechanism of Action

Pharmacokinetics of Phenobarbital

- Available in parenteral, intramuscular and enteral formulations
- Bioavailability of IM,IV and PO formulations is almost 100% complete
- Time to maximum plasma concentration
 - IV: 15 to 30 minutes
 - PO: 0.5 to 4 hours
 - IM: 2 to 8 hours
- Half-life is 1 to 4 days
- Possible induction of cytochrome 2B6 and 3A4

Side Effects

- CNS excitation or depression
- Respiratory depression
- Dermatitis
- Facial edema
- Headache
- Hypotension

- Nausea
- Bradycardia
- Agitation
- Confusion
- Insomnia
- Somnolence
- Hallucinations
- Vertigo

Contraindications / Reactions

- Contraindications
 - History of SJS/TEN
 - History of acute intermittent porphyria
 - History of rash with an AED
 - History of cirrhosis

- Adverse Reactions
 - Sedation
 - Respiratory depression
 - Rash/SJS/TEN
 - Exacerbation of acute or intermittent porphyria
- Chronic Use
 - Bone loss
 - Hematologic

Published Literature About Phenobarbital Dosing

Use of Phenobarbital as an Adjunctive Therapy

- 51 patients were randomized to receive phenobarbital versus 51 placebo
- Patients received a single dose of i.v. phenobarbital had a decreased ICU admission rate
 - Phenobarbital vs. placebo, 8% vs. 25%, difference 17% [95% confidence interval (CI) 4–32%]
- Phenobarbital resulted in decrease in :
 - Use of continuous lorazepam infusion
 - 4% vs. 31%; difference 27% [95% Cl 14–41%]
 - Decreased total lorazepam required
 - 26 vs. 49 mg; difference 23 mg [95% Cl 7–40]
- There were no differences in:
 - Telemetry admission
 - Floor ward admission
 - Median ICU
 - Total hospital LOS

Use of Phenobarbital as an Adjunctive Therapy

Advantages

- A single dose of 10 mg/kg
 IV phenobarbital resulted in decreased:
 - ICU admission rate
 - Use of continuous lorazepam infusion
 - Not associated with increased adverse events

Disadvantages

- Predominantly males
- Single center study

Addition of Phenobarbital to Benzodiazepines in ICU Patients With DTs

Crit Care Med 2007;35:724-730

Addition of Phenobarbital to Benzodiazepines in ICU Patients With DTs

Crit Care Med 2007;35:724-730

Addition of Phenobarbital to Benzodiazepines in ICU Patients With DTs

Advantages

- Appear to augment benzodiazepines' efficacy at the GABA_A receptors in the brain
- Inhibit stimulatory glutamate receptors
- Escalating doses of benzos
 + Phenobarbital reduce the need for mechanical ventilation

- Disadvantages
 - Single center study
 - Narrow therapeutic window
 - Potential to induce respiratory depression

Taper Dosing of Phenobarbital

- Dosing Schedule
 - Day 1: 60 mg PO Four times a day
 - Day 2: 60 mg PO Three times a day
 - Day 3: 60 mg PO Twice daily
 - Day 4: 30 mg PO Twice daily

Phenobarbital Treatment in Patients resistant to Benzodiazepines for AW

- Definition of Benzodiazepine Resistance:
 - A need for more than 10 mg of lorazepam in 1 hour
- Phenobarbital improved symptom control, minimized the potential for propylene glycol toxicity and was not associated with respiratory depression and facilitated successful weaning of benzodiazepine.

When to Use Phenobarbital in Alcohol Withdrawal

- Patients with:
 - A history of tremors or seizures
 - Apparent non-response to benzodiazepines or history of benzodiazepine resistance
 - Active DTs or severe withdrawal symptoms
 - Altered mental status and/or high or medium risk for delirium
- Patients at risk or with respiratory compromise in which you may wish to avoid benzodiazepines

Alcohol Withdrawal Orderset

Medium Risk for Alcohol Withdrawal

- Active Alcohol dependence plus 2 of the following:
 - 2 days or more since last drink
 - Elevated BAL on admit
 - Autonomic dysfunction with Blood Alcohol Level > 0.1 g/dL
 - Elevated MCV and/or AST/ALT ratio
 - Heavier and longer drinking history
 - Burn related injuries
 - Falls, particularly with long bone fractures

High Risk for Alcohol Withdrawal

- Past DTs +/- past seizures AND
 - + recent alcohol use (>2weeks)
 - Active symptoms of AWS
 - Positive BAL, elevated MCV, elevated AST/ALT ratio

Risk of Sedation

- Age > 65 years old
- Hepatic dysfunction
- Narcotics
- Head injury Neuro checks
- Recent administration of Benzodiazepines
- Current administration of sedatives

Risk of Respiratory Compromise

- Pneumonia
- Rib fractures
- Chest tube
- Pulmonary contusion
 - Caused by chest trauma => fluid accumulation
 - Leads to hypoxia
- C-collar/brace

Algorithm for Loading Dose

Phenobarbital Protocol

- Weight-based dosing ranging from 6-15 mg/kg
- Dosing is broken up into 3 loading doses and a taper regimen
 - Loading Dose: 1 dose given q3h for 3 doses
 - 1st dose: 40%
 - 2nd dose: 30%
 - 3rd dose: 30%
 - Maintenance dose (decreasing by approx. 50% every stage)
 - D#2+3: Stage 1
 - D#4+5: Stage 2
 - D#6: Stage 3
 - D#7: Stage 4

Pilot Study Data

- Patients were retrospectively reviewed from November 1, 2016 to April 30, 2017
- 28 patients were initiated on the Phenobarbital protocol
- 14 patients utilized Precedex for control of sedation/agitation/delirium
- 27 patients utilized benzodiazepines
- 18 patients had documented CIWA scores >15 prior to starting Phenobarbital
- 4 patient experienced ADRs

Pilot Study Results

- 64% patients had Precedex discontinued within 24h from starting Phenobarbital
 - 3 patients started Precedex after Phenobarbital was initiated
- 55% patients discontinued benzodiazepine use upon initiation of Phenobarbital
- 94% patients were controlled once Phenobarbital protocol was initiated
 - 7 patient continued Phenobarbital + Benzo
 - 2 Patient continue Phenobarbital + Precedex
- 3 patients received q6h dosing
 - 2 patients had therapy discontinued early

Full Course of Therapy

- 75% patients completed the full course of therapy
- 25% patients stopped therapy prior to protocol completion
 - 2 patients had no desire to stop drinking
 - 1 patient had therapy stopped by provider due to lack of symptoms
 - 4 were due to ADRs
 - I developed a rash
 - 3 were due to sedation issues

Options to Optimize Treatment

- Consider Phenobarbital therapy prior to patients becoming uncontrolled on a CIWA protocol
- Reload the patient with empiric loading doses
- Consider q6h dosing
- Increase the Phenobarbital taper length
- Continue CIWA scoring, without dosing with Lorazepam

Patient Case #1

- 28 y.o. male, MS, is brought to the emergency room for an altered mental status.
- He called EMS reporting that someone was breaking into his house and Police and SWAT were standing outside watching.
- Patient has a past medical history of alcohol abuse and reports drinking 4 glasses of vodka daily.
- Patient stated that he had his last drink 3 days prior to admission as he planned to self detox.

Course of Treatment

- Started on the Hospital CIWA protocol
- Patient continue to have CIWA score >15 whose symptoms remained uncontrolled
- MS was started on the phenobarbital protocol
 - Classified as High risk of withdrawal and Severe risk of sedation/respiratory compromise
- CIWA treatment was continued throughout the time the patient was on phenobarbital
 - Continued to have CIWA scores >15
 - Received regular doses of Lorazepam

Patient Case #1

- Recommendations/Improvements
 - Review the Risk Assessment of the patient
 - Reload the patient vs. q6 hour dosing
 - Start phenobarbital earlier as the patient remained uncontrolled on high dose benzodiazepines

Patient Case #2

- 52 y.o male, GC, was shoveling snow when he arrested.
- ROSC was returned prior to arrival in the emergency room.
- Patient was rushed to the cath lab and stents were placed.
- In speaking with the patient's wife, the patient has a significant drinking history, 30 beers per day.
- Patient's last drink was only hours before the incident, and the last day without a drink is unknown.

Course of Treatment

- Patient was started on Precedex and phenobarbital protocol 48 hours after admission
 - Categorized as High risk of withdrawal, low risk for respiratory compromise
- Patient was uncontrolled on both agents as the taper began
 - Scheduled Lorazepam was started
 - Precedex and Phenobarbital continued
- Phenobarbital q6h dosing was initiated 36 hours after the loading dose
 - Precedex and scheduled Lorazepam were able to be rapidly weaned
- Phenobarbital q6h dosing was continued for 4 days and then patient taper off based on the protocol

Patient Case #2

- Recommendations/Improvements
 - Utilize the higher loading dose based on risk stratification
 - Reload the patient based on symptom improvement from the initial loading dose
 - Utilize phenobarbital q6h dosing before starting the taper

Patient Case #3

- 51 y.o. male, PW, was brought to the emergency room by EMS after police were called by neighbors.
- When police arrive, the patient appears to be shadow boxing in the mirror, reporting that he was fighting someone.
- While in the EMR the patient reports having auditory and visual hallucinations.
- CT of the head and CXR did not show any abnormalities.

Course of Therapy

- Patient was treated in the EMR with Lorazepam and Diazepam
 - Lorazepam was given based on CIWA in conjunction with additionally ordered doses
 - Patient's symptoms continued and remain uncontrolled
- Patient was continued on the CIWA protocol and Precedex was added to control symptoms
- Phenobarbital Protocol was initiáted
 - Precedex was rapidly tapered after the loading doses
 - CIWA was discontinued within 24 hours
- PW was controlled successfully on phenobarbital alone
- PW was completed the last 2 days of therapy as an outpatient

Patient Case #3

- Recommendations/Improvements
 - Start phenobarbital protocol earlier
 - Patient was uncontrolled on high dose benzodiazepines
 - Utilize phenobarbital protocol instead of Precedex

Improvements

- Reviewed and revised PRH CIWA protocol
- Provided education to Providers and nursing staff
- Expanded availability of Phenobarbital Protocol Initiation
- Using PRN Phenobarbital for patients receiving high doses of benzodiazepines in non-ICU settings in addition to protocol
- Utilized RASS and CIWA scoring to monitor Phenobarbital

Questions?

If there are questions that remain unanswered please email us:

karen.michaud@hcahealthcare.com christopher.devine2@hcahealthcare.com

Thank you

References

- Dolman JM., Hawkes ND. Combing the audit questionaire and biochemic markers to asses alcohol use and risk of alcohol withdrawal in medical inpatients. Alcohol & Alcoholism Vol 40. No6., pp.515-519, 2005.
- Rosenson J., Clements C, et al. Phenobarbital for acute alcohol withdrawal: a prospective randomized double-blind placebo-controlled study. The Journal of Emergency Medicine, Vol.44, No. 3, pp.592-598, 2013.
- Askgaard G, Hallas J. et al. Phenobarbital compared to benzodiazepines in alcohol withdrawal treatment: a register-based cohort study of subsequent benzodiazepine use, alcohol recidivism and mortality. Drug and alcohol dependence 161 (2016) 258-264.
- 4. Stehman CR, Mycyk MB. A rational approach to the treatment of alcohol withdrawal in the ED. American Journal of Emergency Medicine 31 (2013) 734-742.
- 5. Hayner CE, Wuestefeld NL. Phénobarbital treatment in a patient with resistant alcohol withdrawal syndrome. Pharmacotherapy 2009;29(7):875-878.
- 6. Gold JA, Rimal B et al. A strategy of escalating doses of benzodiazepines and phenobarbital administration reduces the need for mechanical ventilation in delirium tremens. Critical Care Medicine 2007;35:724-730.
- 7. Rosenthal RN, Perkel C, et al. A pilot open randomized trial of valproate and phenobarbital in the treatment of acute alcohol withdrawal. Am J Addict 1998;7:189-197.
- 8. Mariani JJ, Rosenthal RN, et al. A randomized, open-label, controlled trial of gabapentin and phenobarbital in the treatment of alcohol withdrawal. The American Journal on Addictions, 15:76-84, 2006.