Targeted Temperature Management in Post Cardiac Arrest Patients

Treesa Joseph, PharmD PGY-1 Pharmacy Resident Atlantic Health System

Continuing Education Presentation June 15th, 2017

Objectives

- Explain the rationale behind the process of post cardiac arrest
 Targeted Temperature Management (TTM)
- Explain the evidence-based recommendations for the use of medications during the TTM process
- List the major side effects of each medication recommended for use in post cardiac arrest TTM

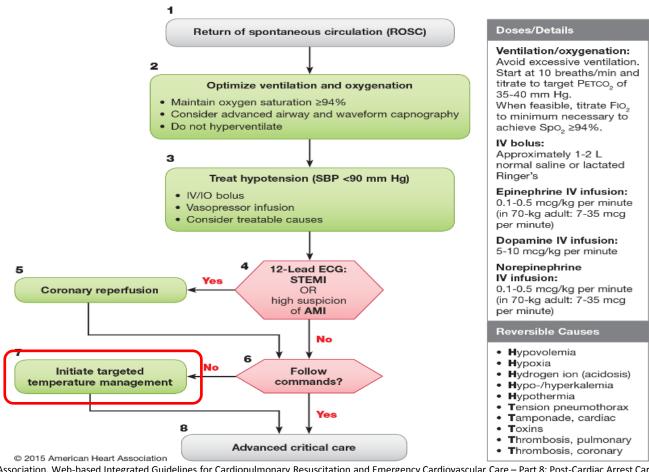
Post Cardiac Arrest Care

American Heart Association:

- All comatose adult patients who attain return of spontaneous circulation (ROSC) undergo targeted temperature management (TTM)
- Cerebral perfusion scores significantly improved in patients who underwent TTM

Post Cardiac Arrest Care

2015 Recommendations- Highlights


- Comatose adult patients with ROSC after out-of-hospital ventricular fibrillation (VF) or ventricular tachycardia (VT) cardiac arrest should be cooled to 32°C to 36°C
 - Class I, (LOE B-R)
- Comatose adult patients with ROSC after out-of-hospital with non VF/VT (non shockable) cardiac arrest or in hospital cardiac arrest should be cooled to 32°C to 36°C
 - Class I, (LOE C-EO)

LOE= Level of evidence R= based on randomized studies EO= based on consensus of expert opinions

Overview

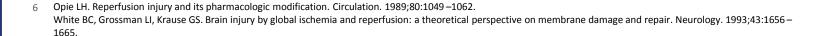
Adult Immediate Post-Cardiac Arrest Care Algorithm - 2015 Update

American Heart Association. Web-based Integrated Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care – Part 8: Post-Cardiac Arrest Care. ECCguidelines.heart.org. © Copyright 2015 American Heart Association, Inc.

Post Cardiac Arrest Care

Cardiac Arrest

- Decreased systemic perfusion decreased cerebral oxygen delivery
- Anoxic brain tissue -cerebral edema


Neurological Deficits

Reperfusion

- Exacerbates cerebral edema
- Alters inflammatory response
- Further tissue injury

Compromised neurological function

Targeted Temperature Management (TTM)

Targeted temperature management previously known as therapeutic hypothermia

- Active treatment to achieve and maintain a specific temperature (between 32°C and 36°C)
- Goal to preserve neurological function

© 2012 C. R. Bard, Inc. Used with permission

Mechanism of TTM

Targeted Temperature Management

Slows cerebral metabolism

Decreases oxygen consumption

Lessens cerebral edema

Landmark Trials

Improved neurological outcomes and mortality in comatose patients with out-of-hospital cardiac arrest

Trial	Design	Outcome	Summary
Bernard S et al 2002	n=77; RCT, un-blinded trial	Survival to discharge with good neurological outcome 49% vs 26% (p=0.046, NNT=4)	Improved the incidence of favorable discharge disposition
Holzer M et al (HACA Trial) 2002	n=136; RCT, multicenter	Favorable neurologic outcome within 6 months 55% vs. 39% (RR 1.40; 95% CI 1.08-1.81; p=0.009)	Therapeutic mild hypothermia increased rate of favorable outcome.

RCT=Randomized Controlled Trial NNT=Number needed to treat CI=Confidence Interval RR=Relative Risk

Landmark Trials

Nielsen N et al (TTM trial) 2013

TTM at 33°C vs 36°C for 24 hours

Outcome	33°C Group	36°C Group	Hazard Ratio or Risk Ratio (95% CI)*	P Value
	no./tota	l no. (%)		
Primary outcome: deaths at end of trial	235/473 (50)	225/466 (48)	1.06 (0.89-1.28)	0.51
Secondary outcomes				
Neurologic function at follow-up†				
CPC of 3–5	251/469 (54)	242/464 (52)	1.02 (0.88-1.16)	0.78
Modified Rankin scale score of 4-6	245/469 (52)	239/464 (52)	1.01 (0.89-1.14)	0.87
Deaths at 180 days	226/473 (48)	220/466 (47)	1.01 (0.87–1.15)	0.92

Cooling to 33°C vs 36°C did not provide any additional benefit

Landmark Trials

Common misconception

'TTM trial showed no benefit with TTM'

TTM trial

- Both groups received active cooling
- Comparison between two target temperatures (33°C vs 36°C)
- High bystander CPR (shorter "no flow" time)

Pop Quiz!

- Patients undergoing targeted temperature management post cardiac arrest are recommended to be cooled to:
 - a. 30°C
 - b. 32°C 36°C
 - c. 25°C 30°C
 - d. All of the above
 - e. None of the above

Pop Quiz!

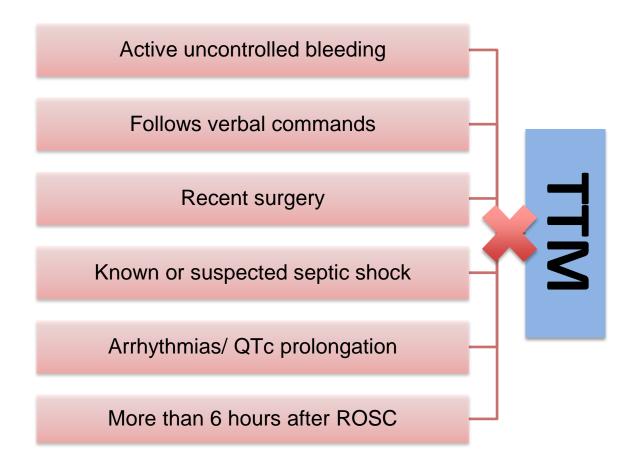
- Patients undergoing targeted temperature management post cardiac arrest are recommended to be cooled to:
 - a. 30°C
 - b. 32°C 36°C
 - c. 25°C 30°C
 - d. All of the above
 - e. None of the above

Ideal Temperature Target

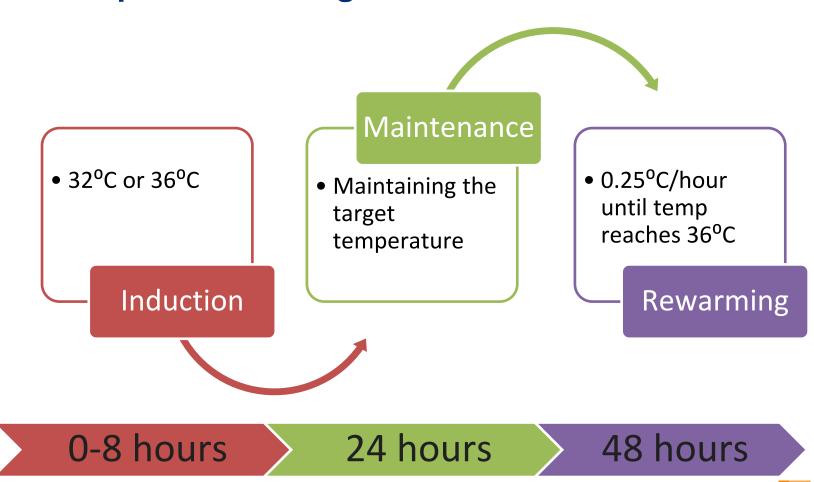
Nielsen et al

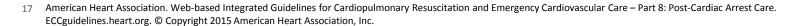
- 33°C vs 36°C offered no additional benefit
- Did not show any additional adverse effects when cooled to 33°C
 Any adverse events (93% vs 90%; p=0.86)
- No clinical or statistically significant differences in patient outcomes
- > Due to lack of significant data, either temperature goal (33°C or 36°C) seem reasonable.
 - Patient specific temperature targets

Initiation of TTM: Optimal time


Trial	Design	Outcome	Summary
Mooney et al 2011	n=140; case review, multicenter	Survival to elapsed time from ROSC to imitation of cooling Relative hazard estimate: 1.20 (95% CI 1.04-1.39)	For every hour delay in cooling risk of death increases by 20%

TTM is a medical emergency!




Relative Contraindications of TTM

Temperature Management Overview

Pop Quiz!

- Targeted temperature is achieved by which of the following ways
 - a. Cooling blanket
 - b. Infusing cold 0.9% sodium chloride
 - c. Keeping the patient in a refrigerator
 - d. A & B
 - e. All of the above

Pop Quiz!

- Targeted temperature is achieved by which of the following ways
 - a. Cooling blanket
 - b. Infusing cold 0.9% sodium chloride
 - c. Keeping the patient in a refrigerator
 - d. A & B
 - e. All of the above

Methods to Institute TTM

Conventional cooling techniques

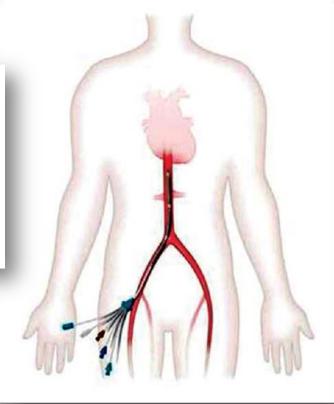
Cold saline, crushed ice or ice bags

Surface cooling systems

- Moving cold fluid or cold air through blanket of pads wrapped around the patient.
- Cooling blankets and surface pads

Intravascular cooling systems

- Circulating cool or warm saline in a closed loop through a catheter's balloon
- Catheter balloons: Femoral, jugular, subclavian



Methods to Institute TTM

Surface vs Intravascular cooling

© 2012 C. R. Bard, Inc. Used with permission

© 2008 Alsius Corp. Used with permission

Methods to Institute TTM

Gillies M et al.

- Objective: Surface vs Endovascular cooling
- Study design: Retrospective cohort study, n= 83
- Outcomes:
 - Less temperature variation in endovascular group
 - Between 10 hour and 20 hour of cooling (1.0 vs 1.7; p=0.003)
 - No difference in outcomes:
 - Hospital mortality (54.2% vs 50.0%; p=0.51)
 - Poor neurological outcomes (59% vs 57.1%; p=0.82)

Hemodynamic Stability

- No specific MAP or SBP targets
 - Published protocols recommend to maintain MAP at 65 mmHg or SBP above 80 mmHg
 - SBP <80 mmHg
 - Norepinephrine
 - 0.1–0.5 mcg/kg/min (In a 70 kg adult, 7–35 mcg/min)
 - Symptomatic Bradycardia
 - Dopamine
 - 5–10 mcg/kg/min
 - May tolerate HR 30-40 bpm!!!
 - Overstimulation of heart rate can decrease myocardial contractility

SBP: Systolic blood pressure MAP: Mean arterial pressure

Goals

- Monitor for seizures
- Optimize analgosedation
- Minimize metabolic demand
 - Paralytics
 - Shivering prevention

Seizures

Cerebral metabolic rate Exacerbate brain injury

Poor prognosis

- Common, occurs in one-third of the patients post cardiac arrest
- Routine seizure prophylaxis in post cardiac arrest patients
 - Not recommended
 - Increased risk of side effects
- Monitoring may include continuous/intermittent Electroencephalography(EEG)
 or Bispectral Index (BIS)

Animal studies have shown:

 Inadequate sedation leads to partial or complete loss of protective effects of TTM

Goals:

- Optimize angalgosedation
 - Prior to initiation of pharmacologic paralytic
- Minimize doses of sedatives and analgesia
 - Hypothermia reduces clearance
- Select agents with short half-life
 - Enables early prognostication

Fentanyl IV

- Opioid analgesic; provides sedation and analgesia
- 100 x potent than morphine, fast onset of action (0-2 seconds)
- Metabolized by liver; decrease in hepatic blood flow
- Adverse effects
 - Respiratory depression
 - Chest wall rigidity with bolus administration
 - Ileus

Fritz H et al & Zhou et al

Hypothermia decreases systemic clearance

Propofol

- Sedative
- Fast onset (10 seconds) and offset of action (3-10 minutes)
- Decreases
 - Cerebral metabolic oxygen demand
 - Shivering threshold
- Adverse effects: Hypotension, bradycardia, propofol infusion syndrome, hypertriglyceridemia

Zhou et al

- Clearance of propofol decreased by 25% compared to normothermia conditions
 - 0.59 (95% CI: 0.24–1.38) L/min vs 0.79 (0.58–1.08) L/min

Midazolam

- Benzodiazepine; provides sedation and amnesia
- Sedative impact on brain provides shiver control
- Onset of action (15 minutes); duration of action (<2 hours)
- Active metabolite: 1-hydroxymidazolam
- Adverse effects: Respiratory depression, bradypnea
- Accumulation of active metabolite in renal impairment; prolonged sedation

Pop Quiz!

- ❖ A 50 year old post cardiac arrest patient is ordered cisatracurium while being started on external cooling pads to attain a temperature of 33°C. What sedative would you recommend in this hemodynamically stable patient based on pharmacokinetic data available in patients undergoing TTM?
 - a. Propofol
 - b. Pentobarbital
 - c. Dexmedetomidine
 - d. Midazolam
 - e. None of the above

Pop Quiz!

❖ A 50 year old post cardiac arrest patient is ordered cisatracurium while being started on external cooling pads to attain a temperature of 33°C. What sedative would you recommend in this hemodynamically stable patient based on pharmacokinetic data available in patients undergoing TTM?

- a. Propofol
- b. Pentobarbital
- c. Dexmedetomidine
- d. Midazolam
- e. None of the above

- Achieve target temperature quicker
- Quickest method to cease shivering
 - Useful in hemodynamically unstable patients

Caveats to Use

- Train-of-four (TOF) unreliable
 - Decreased peripheral nerve conduction
- Mask seizures
 - Continuous EEG monitoring is recommended

2016 Critical care guideline recommendations:

- No recommendation for routine use in TTM
- Suggest NMBs can be used to manage overt shivering during TTM

Task force good practice statement:

- Assessment of degree of blockade
 - Peripheral nerve stimulation + clinical assessment (ventilator triggering, degree of shivering)
- Protocol guided NMB use in patients undergoing therapeutic hypothermia
- Adequate analgesia and sedation prior to and during neuromuscular blockade.

- Salciccioli et al.
 - Objective: Continuous NMB for 24 hours and outcomes in OHCA
 - Study design: n=111, A post hoc analysis, prospective observation study
 - Outcomes:
 - Increase in crude survival rate with continuous NMB use
 - 78% vs 41%; p = 0.004
 - Post multivariate adjustment
 - OR: 7.23, 95% CI: 1.56-33.38
 - Showed improved lactate clearance

OR: Odds ratio

CI: Confidence interval

OHCA: Out of hospital cardiac arrest

- Lascarrou et al.
 - Objective: Effect of NMB on neurological outcomes and incidence of pneumonia
 - Study design: Observational retrospective study, n= 144
 - Outcomes:
 - No statistically significant difference in neurological outcomes after 3 months in NMB group
 - 42% vs. 36%, p = 0.26
 - Early-onset pneumonia higher in NMB group
 - 64% vs. 33%; p = 0.005; after adjustment for propensity scores; no difference

Neuromuscular blockers (NMB)

Cisatracurium

- Neuromuscular blocker; given only after sedation
- Eliminated through urine
 - Accumulation with renal impairment

Adverse effects:

- May mask insufficient sedation and/or seizures
- Neuropathy and prolonged weakness

Alternative Agent:

Vecuronium

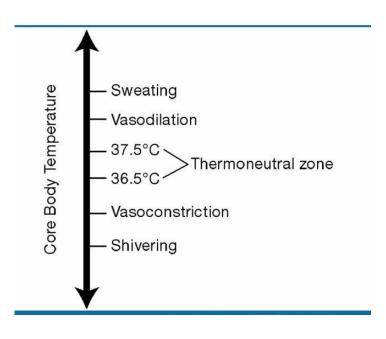
- Active metabolite: 3-desacetyl vecuronium
- Rate of elimination decreased in hepatic dysfunction
 - Significant increase in duration of action

Maintenance Phase

Post Cardiac Arrest Care

2015 Recommendations- Highlights

- Hypothermia (TTM) post cardiac arrest should be maintained for at least 24 hours after achieving target temperature.
 - Class IIa, (LOE C-EO)
- Reasonable to actively prevent fever in comatose patients after TTM.
 - (Class IIb, LOE C-LD)

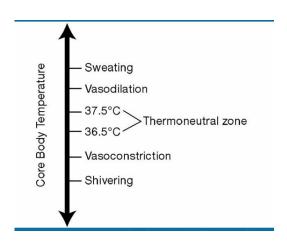

LOE= Level of evidence EO= based on consensus of expert opinions

Shivering Pathophysiology

- Human body maintains a core temperature: 36.4°C +/- 0.4°C
- Shivering:
 - Involuntary response to enhance heat production
 - Resulting in an increase in oxygen consumption

Bedside Shivering Assessment Scale

- Bedside Shivering Assessment Scale (BSAS)
 - Quick assessment to identify shivering in patients


	Type of		
Score	shivering	Location	
0	None	No shivering is detected on palpation of the masseter, neck, or chest muscles	
1	Mild	Shivering localized to the neck and thorax only	
2	Moderate	Shivering involves gross movement of the upper extremities (in addition to neck and thorax)	
3	Severe	Shivering involves gross movements of the trunk and upper and lower extremities	

Frequent shivering assessment is required in the induction phase

Widen interthreshold range

- Lowering vasoconstriction and shivering threshold
- Raising vasodilation and sweating thresholds
- Pharmacologic agents:
 - Acetaminophen
 - Buspirone
 - Dexmedetomidine
 - Meperidine
 - Magnesium

Acetaminophen

- Inhibition of cyclooxygenase-mediated prostaglandin synthesis
- Lowers hypothalamic set-point
- Provides analgesia

Studies showed high dose acetaminophen (4-6 g /day) decreased body temperature by 0.3°C – 0.4°C

Adverse effects: Liver toxicity

Note: Dose reduction or discontinuation in hepatic impairment patients

Buspirone

 Acts centrally as 5 HT1 receptor agonist to decrease shivering threshold

Mokhtarani et al showed that combination of buspirone and meperidine caused little sedation or respiratory adverse effects

Shivering thresholds:

Buspirone 60mg	Buspirone 30mg + low dose Meperidine (serum conc 0.4mcg/mL)	High dose Meperidine (Serum conc 0.8mcg/mL)
35°C +/- 0.8°C	33.4°C +/- 0.7°C	33.4°C +/- 0.7°C

Adverse effects: Hypotension, nausea

Buspirone and Dexmedetomidine

 Buspirone (5 HT1 receptor agonist), Dexmedetomidine (α2agonist)

Lenhardt R et al showed buspirone and dexmedetomidine synergistically reduced shivering threshold.

- Shivering thresholds: (p<0.01)
 - Control: 36.4°C +/- 0.5°C
 - Buspirone only: 34.9°C +/-0.6°C
 - Dexmedetomidine only: 36.1°C +/- 0.6°C
 - Combination: 34.2°C +/- 0.5°C

Meperidine IV

K-opioid receptors and α2 adrenergic receptors

Kurz A et al showed

 Reduced shivering threshold nearly twice as much as the vasoconstriction threshold

o (6.1°C +/- 3.0°C and 3.3°C +/- 1.5°C,
$$p = 0.001$$
)

Adverse effects: Somnolence, seizures, hypotension, seizures

Magnesium Sulfate

Peripheral vasodilation – decrease time to goal temperature

Zwelfler et al

- Magnesium + Meperidine vs Meperidine containing other regimens in healthy patients cooled to 31°C
- Showed that the magnesium group
 - » Higher comfort scores (p < 0.001)</p>
 - » No adverse events associated with addition of magnesium
 - » Vasodilation: 88% vs 29% (p = 0.02)

Adverse effects: Hypotension, heart block, CNS depression

Pop Quiz!

- What is the major side effect we need to monitor for a patient receiving meperidine during TTM?
 - a. Seizure
 - b. Shivering
 - c. Hypertension
 - d. None of the above

Pop Quiz!

- What is the major side effect we need to monitor for a patient receiving meperidine during TTM?
 - a. Seizure
 - b. Shivering
 - c. Hypertension
 - d. None of the above

Rewarming Phase

Post Cardiac Arrest Care

2015 Recommendations- Highlights

- Reasonable to actively prevent fever in comatose patients after TTM
 - (Class IIb, LOE C-LD)

24 hours after TTM start time

- Goal:
 - Rewarm to 36.5°C at a rate of 0.25°C/hour
 - Actively maintain temperature at 36.5°C for 24 hours
 - Passively maintain normothermia for next 48 hours

LOE=Level of evidence EO= based on consensus of expert opinions

Rewarming Phase

Post-cooling Fever

Bro-Jeppesen et al

- Objective: 30 day mortality in patients with post-cooling fever vs no fever
- Study design: Prospective, observational, cohort study, n = 270
- Outcomes:
 - 30 day mortality
 - Adjusted hazard rate (HR):1.8 (95% CI: 1.1-2.7, *p*=0.02)
 - Good neurological outcomes
 - (61% vs 75%, *p*=0.02)

ICU Management

Electrolyte management

- Monitor levels:
 - Magnesium, potassium, calcium and phosphorus
- During TTM:
 - Dysrhythmias: low magnesium and potassium
 - Replace potassium: <3.5mEq/L
- Post TTM:
 - Elevation in electrolyte levels due to shifting of electrolytes
 - Increased hyperkalemia risk

ICU Management

Hyperglycemia

- Decreased insulin sensitivity and secretion
- Negative neurological outcomes seen with hyperglycemia
- Management: Initiate continuous intravenous insulin
 - Monitor glucose levels closely

Venous Thromboembolism (VTE) Prophylaxis

- Assess patients coagulation need appropriately
- Avoid SUBQ administration

Stress Ulcer Prophylaxis

Follow institutional policy

Pop Quiz!

- The rationale for cooling patients post cardiac arrest is:
 - a. To preserve neurologic function
 - b. To allow heart to rest and recover
 - c. To allow patients body to recover from shock
 - d. None of the above

Pop Quiz!

- The rationale for cooling patients post cardiac arrest is:
 - a. To preserve neurologic function
 - b. To allow heart to rest and recover
 - c. To allow patients body to recover from shock
 - d. None of the above

Pharmacist Impact

- High risk medication classes
- Potentially uncommon medications
- Reduce delay in medication administration
- Medication education

Be competent and proactive!

Targeted Temperature Management in Post Cardiac Arrest Patients

Questions: treesa.joseph@atlantichealth.org

Treesa Joseph, PharmD
PGY-1 Pharmacy Resident
Atlantic Health System

Continuing Education Presentation June15th, 2017

