The Power of Data and Analytics in Robotic Surgery Simulation

Jeff Berkley, PhD
CEO & Founder
Mimic Technologies, Inc

www.MimicSimulation.com info@MimicSimulation.com (800) 918-1670
Disclosure

Dr. Jeff Berkley is the CEO, Chairman and Founder of Mimic Technologies
Executive Summary

- The clinical battle in robotic is nearly won. The focus is now on cost and efficiency.

- Differences in surgical skill drive patient outcomes and costs. This is true for robotic surgery as well.

- Identifying the surgeons who need the most help and putting a program in place to help remediate as well as support objective privileging and credentialing is key.

- Strong robotic training programs are focused on “proficiency” and leverage simulation and data to achieve consistency of performance.
The Clinical Battle Over Robotics is Nearly Won

- Data is beginning to support that robotic surgery is equivalent or superior to open or laparoscopic surgery in the following areas:
 - Urology - Prostate, Kidney, Bladder (20% of robotic procedures in the U.S. in 2015)
 - Gynecology - Hysterectomy (48% of robotic procedures in the U.S. in 2015)
 - General Surgery - Developing for Hernia and Low Anterior Resection (28% of robotic procedures in the U.S. in 2015)

- Robotic surgery is continuing to capture more of the laparoscopic market, despite costs (currently 10% of laparoscopic procedures) with increases in robotic procedures worldwide from **570,000 in 2014** to **652,000 in 2015**, according to the 2015 ISI Annual Report

- Capital equipment and instrument costs will decrease with new robotic surgery vendors entering the market and increased robot availability will increase procedure growth

The challenge?

- More pressure on hospitals to monitor the training and skill levels of surgeons, especially as it relates to managing risks and lowering costs
- Increased training demand for credentialing and privileging programs
The Current Debate is About Cost

50% of costs are related disruption in the OR:
- Consumables
- Setup times
- OR times
- Standardization of Procedures

50% of costs are related to inadequate surgical skills and techniques:
- Surgeon console skills
- Clinical decision making
- First Assistant / OR Team skills

- OR Operational Efficiency Costs
- OR Surgical Efficiency Costs
- Complication Rates
- Re-admissions

Surgeon Proficiency
Technical skill impacts clinical outcomes

Example:
In a study of bariatric surgeons, who were separated into quartiles based on technical skill assessment, poor performers generated:

- 2.5x more readmissions (6.7% vs 2.7%)
- 3x more complications (14.5% vs 5.2%)
- 5x more deaths than top performers (0.26% vs 0.05%)

This study was conducted with 20 Surgeons and 10,343 patients between August 2006 and August 2012

(Birkmeyer, et al, NEJM, October 2013)
Examples from Robotic Surgery

Data from 250 surgeons
200,000 robotic cases
36 institutions

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Avg Op time Hrs</th>
<th>Complications % (major + minor)</th>
<th>LOS Days</th>
<th>Re-Admissions %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign Hysterectomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robotic Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 25% Volume</td>
<td>1.5</td>
<td>1%</td>
<td><1.0</td>
<td><1.0%</td>
</tr>
<tr>
<td>Bottom 25% Volume</td>
<td>2.4</td>
<td>4%</td>
<td>1.8</td>
<td>3%</td>
</tr>
</tbody>
</table>

55 Surgeons
5200 Cases

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Avg Op time Hrs</th>
<th>Complications %</th>
<th>LOS Days</th>
<th>Re-Admissions %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholecystectomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robotic Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 25% Volume</td>
<td>0.60</td>
<td>2%</td>
<td><1.0</td>
<td><1.0%</td>
</tr>
<tr>
<td>Bottom 25% Volume</td>
<td>1.5</td>
<td>6%</td>
<td>1.5</td>
<td>6%</td>
</tr>
</tbody>
</table>

Impact of about between $3,900 and $4,550 per case in increased cost for bottom performers tied to skill

(data / study from CAVA Robotics, Dr. Rick Low et al, 2015)
Cost Model Based on Hysterectomy

<table>
<thead>
<tr>
<th>Activity</th>
<th>Cost</th>
<th>Top 25%</th>
<th>Cost per case</th>
<th>Bottom 25%</th>
<th>Cost per case</th>
<th>Delta per case</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR Times</td>
<td>$50 per minute</td>
<td>90 mins</td>
<td>$4,500</td>
<td>140 mins</td>
<td>$7,000</td>
<td>$2,500</td>
</tr>
<tr>
<td>Complications</td>
<td>$20,000 per complication</td>
<td>1%</td>
<td>$200</td>
<td>4%</td>
<td>$800</td>
<td>$600</td>
</tr>
<tr>
<td>LOS</td>
<td>$500 per day</td>
<td>1 day</td>
<td>$500</td>
<td>1.8 days</td>
<td>$900</td>
<td>$400</td>
</tr>
<tr>
<td>Re-Admissions</td>
<td>$20,000 per re-admission</td>
<td>1%</td>
<td>$200</td>
<td>3%</td>
<td>$600</td>
<td>$400</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$5,400</td>
<td></td>
<td>$9,300</td>
<td>$3,900</td>
</tr>
</tbody>
</table>

Delta = $3,900 per case
Procedural Volumes Across a Surgeon Population

Robotic Cases/Surgeon
2012 - 2014

Sample: A hospital group doing 4,500 cases a year using 20 robots with the lowest performing 50 surgeons doing approximately 225 cases a year

Potential savings from training bottom performing 50 surgeons and teams: $926,200 per year

(data / study from Loftus Health Healthcare Consulting, 2015)
Improvements to existing operations realized through the inclusion of robotic surgery simulation training:

Figure 1. Summary of Simulation Effects on Surgical Practice

Smith, et al, Robotic Simulators: A Case for the Return on Investment
Financial Impact of Robotic Surgery Simulation Training

Simulation Training

Surgeon Productivity & Competency
- Increase number of competent surgeons
- Improve surgeon ergonomics
- Improve surgeon stamina
- Increase length of OR career

Training Costs
- Reduce outside training events
- Reduce surgeon/instructor mentoring time
- Reduce overall training costs
- Development of certification of skills program

Hospital Costs
- Decrease the mean length of surgeries
- Increase number of surgeries per day
- Reduce medical errors
- Reduce instrument breakage
- Reduce liability insurance & OR Staff

Increased Revenue

Effects of Simulation-based Training on Robotic Surgery Business

Smith, et al, Robotic Simulators: A Case for the Return on Investment
What Have We Learned in 10 Years?

- Simulation can help accelerate the learning curve for surgeons without impacting patient safety.
- Simulation can help distinguish the innate skill levels of individuals.
- Having a structured curriculum is vital to success.
- User performance benchmarking through simulation can be used as part of a hospital or institution’s risk management strategy.
Culligan Study – Morristown Protocol

<table>
<thead>
<tr>
<th></th>
<th>Expert Surgeons</th>
<th>Study Group</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>5</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Demographics</td>
<td>N/A</td>
<td>Same (49.1)</td>
<td>Same (53.5)</td>
</tr>
<tr>
<td>Average simulation hours</td>
<td>Some</td>
<td>20 (9.7 to 38.2)</td>
<td>0</td>
</tr>
<tr>
<td>Number of cases</td>
<td>Average 142 per year</td>
<td>0</td>
<td>Enough to be granted privileges</td>
</tr>
<tr>
<td>Mean Hyst operative times</td>
<td>20.2 Minutes</td>
<td>21.7 Minutes</td>
<td>30.9 Minutes</td>
</tr>
<tr>
<td>EBL</td>
<td>25ml</td>
<td>25.4ml</td>
<td>31.25ml</td>
</tr>
<tr>
<td>Goals score</td>
<td>50</td>
<td>34.7</td>
<td>31.1</td>
</tr>
</tbody>
</table>

“Completing this protocol of robotic simulator skills translated to expert-level surgical times during live human surgery. As such, we have established predictive validity of this protocol.”

(Culligan, et al, FPMRS, Jan/Feb 2014)
Surgical Aptitude Can Be Predicted Through Simulation

- Study completed using 26 simulation exercises
- Statistically differentiated
 - Best 7% of Medical Students
 - Worst 12% of Medical Students

(Moglia, et al, JSE, Jan 2014)
N = 121
Target time = 12 Weeks
1-week intensive simulation training activity

(Volpe, et al, EAU, Oct 2014)
Continuous Improvement

Energy and dissection - Energy switch 2

Needle driving - Suture sponge 2

Fig. 2 – Progressive improvement in overall scores for different tasks on the da Vinci surgical simulator before, during (weeks 4 and 5), and after completion of the curriculum. * Significant difference compared to overall score before the curriculum \(p < 0.05 \). ° Significant difference compared to overall score in week 4 \(p < 0.05 \).

Results of the European Association of Urology Robotic Training Curriculum

(Volpe, et al, EAU, Oct 2014)
Example:

- A Hospital Group with five hospitals, four robots (1-S & 3-Si), 49 accredited surgeons

- Implemented annual privileging curriculum based on five simulation exercises (one exercise per skill)

- Removed robotic surgery privileges from four surgeons due to inability to pass required curricula:
 - Too much tremor
 - Eyesight deterioration / lack of depth perception
The Importance of Proficiency

- To become a good surgeon trainees need to become proficient at:
 - Technical Skills
 - Clinical Decision Making
 - Teamwork

- Proficiency can be measured through simulation by the implementation of:
 - Structured curriculum
 - Agreed expert level performance benchmarks
 - Specified numbers of required passes
 - Ex. two consecutive, five non-consecutive

www.MimicSimulation.com
What Does an Excellent Training Program Look Like?

- Individuals are uniquely identified and training results and data are recorded
- Proficiency levels are discussed and agreed upon
- Curriculum has been developed, assigned to users and measured regularly
- Simulation platforms are easily accessible
- Simulation time is transferable to the real tool
- Teams can train together
- Cognitive and psychomotor skills can be validated
Data is key in monitoring and tracking surgeon training progress

- Objectively determines true proficiency
- Helps to identify trends and weak areas
- Allows for comparison between users and institutions
Conclusion – Discussion Points

- Do you know how your robotic surgical program is doing?

- Do you track the differences in outcomes and costs of the surgeon population?

- Do you know what % of surgeries are performed by your top and bottom 25%?

- Are you focusing on the amount of training completed or reaching proficiency with a data feedback loop?

- Is objective data a key component of your privileging and credentialing program?
Evidence-Based References

A Comparison of Quality Outcome Measures in Patients Having a Hysterectomy for Benign Disease: Robotic vs. Non-robotic Approaches
Martin A. Martino, MD, Elizabeth A. Berger, DO, Jeffrey T. McFetridge, MS, Jocelyn Shubella, BS, Gabrielle Gosciniak, BA, Taylor Wejkszner, BA, Gregory F. Kainz, DO, Jeremy Patriarco, BS, M. Bijoy Thomas, MD, Richard Boulay, MD
http://dx.doi.org/10.1016/j.jmig.2013.10.008

Surgical Skill and Complication Rates after Bariatric Surgery
John D. Birkmeyer, M.D., Jonathan F. Finks, M.D., Amanda O'Reilly, R.N., M.S., Mary Oerline, M.S., Arthur M. Carlin, M.D., Andre R. Nunn, M.D., Justin Dimick, M.D., M.P.H., Mousumi Banerjee, Ph.D., and Nancy J.O. Birkmeyer, Ph.D., for the Michigan Bariatric Surgery Collaborative

Robotic Simulators: A Case for the Return on Investment
K.M. Simpson, R.D. Smith
Florida Hospital Nicholson Center, Celebration, Florida
356 Open Communications 19 - Advanced Endoscopy (4:38 PM - 4:43 PM)
http://dx.doi.org/10.1016/j.jmig.2014.08.371

Predictive Validity of a Training Protocol Using a Robotic Surgery Simulator
Patrick Culligan, MD, Emil Gurshumov, MD, Christa Lewis, DO, Jennifer Priestley, PhD, Jodie Komar, BSN, and Charbel Salamon, MD
Female Pelvic Medicine & Reconstructive Surgery, Volume 20, Number 1, January/February 2014

Distribution of innate ability for surgery amongst medical students assessed by an advanced virtual reality surgical simulator
Andrea Moglia, Vincenzo Ferrari, Luca Morelli, Franca Melfi, Mauro Ferrari, Franco Mosca, Alfred Cuschieri
Surgical Endoscopy, Volume 28, Issue 6, pp 1830 – 1837, June 2014

Pilot Validation Study of the European Association of Urology
Alessandro Volpe, Giacomo Novara, Kamran Ahmed, Henk van der Poel, Prokar Dasgupta, Alexandre Mottrie, Vincenzo Ficarra
European Urology, Volume 68, Issue 2, Pages 292-299
http://dx.doi.org/10.1016/j.eururo.2014.10.025

Flight plan for robotic surgery credentialing: New AAGL guidelines
John P. Lenihan Jr, MD
Questions