

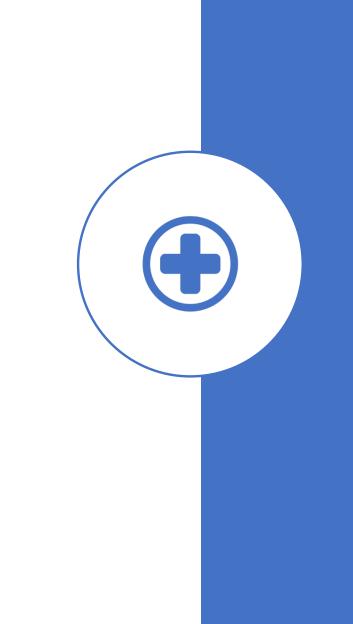
Oncologic Emergencies & the Role of the Pharmacist

> A presentation for HealthTrust Members May 2, 2019

Sana Mohayya, PharmD, MHS PGY-1 Pharmacy Resident Robert Wood Johnson University Hospital

Disclosures

- The presenter has no financial relationships with any commercial interests pertinent to this presentation.
- This program may contain the mention of drugs or brands presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes and should not be perceived as an endorsement of any particular supplier, brand or drug.


Pharmacist Objectives

- Recognize the types of oncologic emergencies and the risk factors associated with them
- Explain how to manage patients with oncologic emergencies
- Create an individualized treatment plan for patients with oncologic emergencies

Outline

- Oncologic emergencies overview
- Febrile neutropenia
- Tumor lysis syndrome
- Hypercalcemia of malignancy

Epidemiology of Cancer

- Cancer is the second leading cause of death globally
- 14.5 million persons estimated to have cancer in US
 - Could reach 19 million by 2024
- Patients with cancer account for 14-22% of all intensive care unit (ICU) admissions
- Evolution of cancer care → mortality rates decreasing by 1.5% each year (from 1991 to 2015)

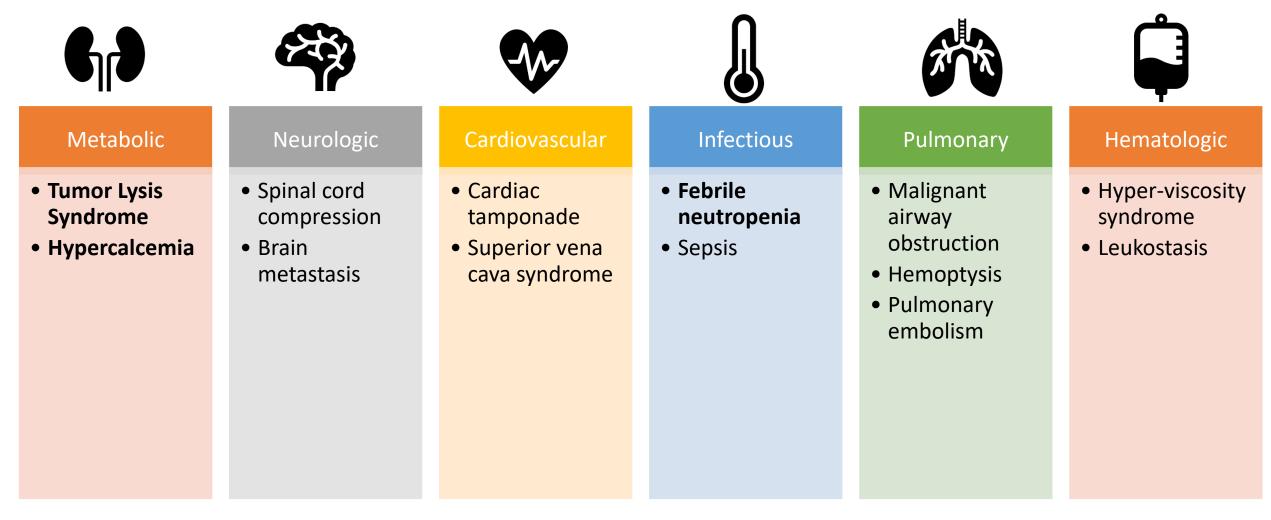
\rightarrow

Oncologic Emergencies

Oncologic Emergencies

Ų

Complications associated with the disease and treatment of cancer



Oncologic emergencies are frequently observed in the hospital

A better understanding of oncologic emergencies will allow pharmacists to play a more active role in the treatment and management of these patients

Oncologic Emergencies

Source: J Intensive Care Med. 2018 Nov 9. Epub ahead of print.

Febrile Neutropenia

Febrile Neutropenia (FN)

- FN = Fever + decrease in absolute neutrophil count (ANC)
- A decrease in the ANC may predispose a patient to serious and life-threatening infections
 - Frequently occurs in patients receiving chemotherapy
 - Fever may be the only sign of infection
- IDSA defines fever as:
 - Single oral temperature <u>></u>38.3°C (101°F) or temperature <u>></u>38.0°C (100.4°F) for > 1 hour

Guidelines

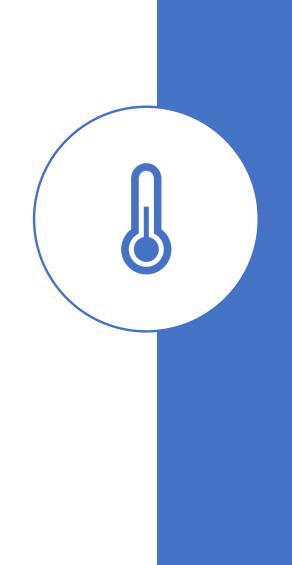
NATIONAL COMPREHENSIVE CANCER NETWORK (NCCN)

INFECTIOUS DISEASES SOCIETY OF AMERICA (IDSA)

ANC <500 cells/mm³ or 1000 cells/mm AND a predicted decline to <500 cells/mm³ over the next 48 hours

ANC < 400 cells/mm³

Sources: J Clin Oncol. 36;14: 1443-1453. Clin Infect Dis. 2011. 52(4):e56-93


Epidemiology

- Rate of major complications ~25–30%
 - Hypotension, acute renal dysfunction, respiratory complications or heart failure
- Mortality rate ranges up to 11%
- In severe sepsis or septic shock, hospital mortality may be up to 50%

6	

Pathophysiology

- Due to myelosuppressive effects of cytotoxic chemotherapy
- Bone marrow infiltrated by tumor
- Direct interference with hematopoiesis

Risk Factors

Low risk

- MASCC Score >21
- Currently outpatient
- No acute comorbid illness
- Anticipated short duration of neutropenia (<100 cells/mcL for < 7 days)
- Good performance status (ECOG 0-1)
- No hepatic insufficiency
- No renal insufficiency

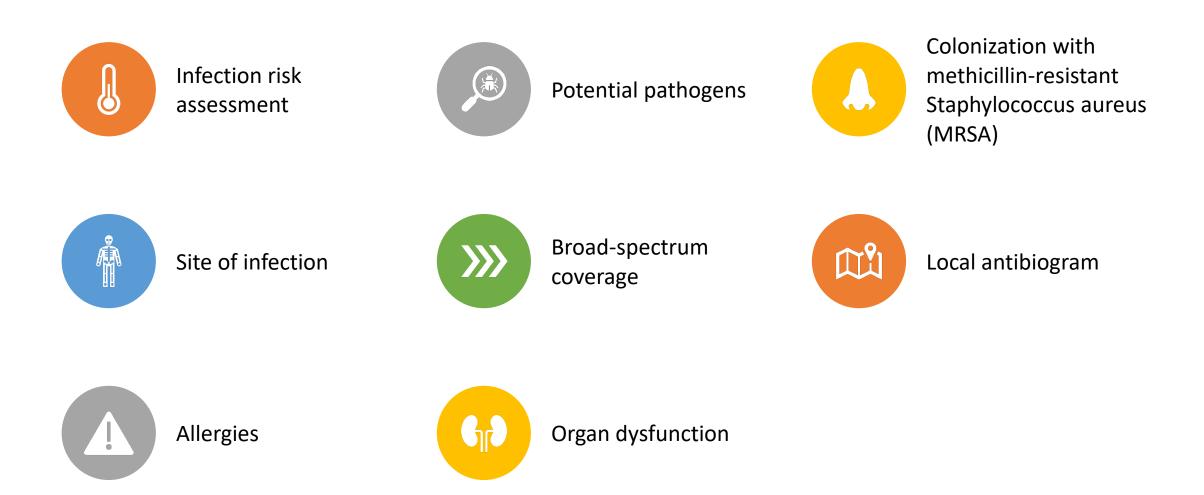
High Risk

- MASCC Score <21
- Inpatient at time of fever
- Significant medical comorbidity
- Allogeneic HCT
- Anticipated prolonged severe neutropenia (<100 cells/mcL and ≥7 days)
- Hepatic insufficiency
- Uncontrolled/progressive cancer
- Pneumonia or complex infection
- Mucositis grade 3–4

Source: National Cancer Comprehensive Network. 2014: MS-15-MS-17.

MASCC Scoring System

- Maximum score: 26
- \geq 21 = low risk for FN
- < 21 = high risk for FN


Multinational Association of Supportive Care in Cancer (MASCC)		
Characteristic	Score	
Burden of FN with no or mild symptoms	5	
No hypotension	5	
No chronic obstructive pulmonary disease	4	
Solid tumor or hematologic malignancy with no previous fungal infection	4	
No dehydration requiring parenteral fluids	3	
Burden of FN with moderate symptoms	3	
Outpatient status	3	
Age <60 years	2	
Age > 60 years	0	
Severe symptoms	0	

Chemotherapy Drugs Associated with FN

Anthracyclines
Taxanes
Topoisomerase inhibitors
Platinum-based agents
Gemcitabine
Vinorelbine
Certain alkylators (cyclophosphamide, ifosfamide)

Source: J Intensive Care Med. 2018 Nov 9. Epub ahead of print.

Considerations for Initial Antibiotics

Common Causative Organisms of FN

Gram-positive Organisms	Gram-negative Organisms	Fungal Organisms
Staphylococcus aureus	Escherichia coli	Candida species
Staphylococcus Epidermidis	Klebsiella pneumoniae	
Streptococcus Pneumoniae	Pseudomonas aeruginosa	
Streptococcus pyogenes		
Streptococci viridans		
Enterococcus faecalis		
Enterococcus faecium		
Corynebacterium		

Initial Antibiotic Regimens

IV antibiotics - Monotherapy

- Cefepime
- Imipenem/cilastatin
- Meropenem
- Piperacillin/tazobactam
- Ceftazidime
- <u>+</u> vancomycin or linezolid

Low risk patients may receive PO antibiotics

- Ciprofloxacin + amoxicillin/clavulanate
- Moxifloxacin
- Levofloxacin
- Not recommended if patient prophylactically received quinolones

Combination regimens may be considered if resistance is suspected

Source: Clin Infect Dis. 2011. 52(4):e56-93

Management of FN

Adjust initial antibiotic regimen based on clinical and microbiological results

If no evidence of gram-positive infection, stop vancomycin after 2 days

?

Unexplained persistent fever in a patient who is otherwise stable would rarely need escalation of therapy

If hemodynamically unstable, escalate and broaden coverage

Source: Clin Infect Dis. 2011. 52(4):e56-93

Management of FN

- Duration of therapy
 - Based on particular organism and site
 - At least the duration of neutropenia (longer if clinically necessary)
- If appropriate treatment course completed and all signs of infection resolved, but patient is still neutropenic – resume oral fluoroquinolone prophylaxis until recovered

Fluoroquinolone Prophylaxis

- For high risk patients with expected duration of ANC <100 cells/mm for >7 days
 - Levofloxacin and ciprofloxacin
- Not recommended for low-risk patients with expected duration of neutropenia < 7 days

For patients with persistent or recurrent fever after 4-7 days of antibiotics with overall duration of neutropenia >7 days Discontinue if no indicators of possible invasive fungal infection (clinically stable, no clinical or chest computed tomography signs of fungal infection, no fungi growth from any site)

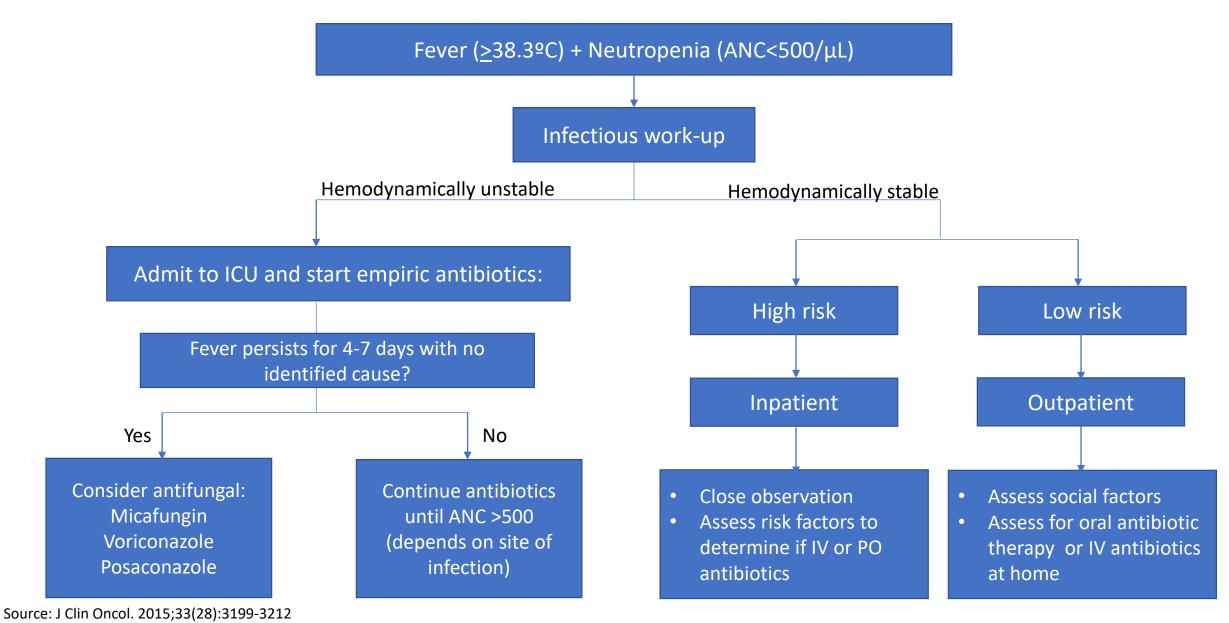
Herpes simplex virus (HSV)-seropositive undergoing allogeneic hematopoietic stem cell transplant or leukemia induction therapy should receive acyclovir

Yearly influenza vaccine

Use of Granulocyte-colony Stimulating Factor (G-CSF)

- Most benefit if given prior to neutropenia
- American Society of Clinical Oncology (ASCO) recommends against routine use as adjunctive treatment for febrile neutropenia
- May be used if high risk
 - Persistent fever despite antibiotics
 - Prolonged neutropenia (>10 days)
 - Severe neutropenia (ANC <100 cells/mcL)
 - Age >65 years

Chemotherapy-induced neutropenia/febrile neutropenia prophylaxis with biosimilar filgrastim in solid tumors versus hematological malignancies: MONITOR-GCSF study


Design	Population	Intervention	Outcomes	Results
 Prospective real- world observational study 140 centers in 12 European countries 	 1447 cancer patients 77.2% solid tumor 22.8 hematological malignancy 	 Patients received biosimilar filgrastim; observed for up to 6 cycles of chemotherapy 	 Prophylaxis patterns and clinical outcomes among patients receiving FN prophylaxis with biosimilar filgrastim 	 No differences in rates of chemotherapy induced neutropenia of any grade Hematologic group had higher rate of FN (9.1% v 5%) More patients in solid group were "over-

prophylacted"

(p=0.009)

Source: Future Oncol. 2019 Mar;15(8):897-907.

Initial Management of Febrile Neutropenia

Question 1: A 47-year old who recently completed cisplatin-based chemotherapy with presents was admitted to the ICU with temperature of 38.5°C and ANC 350. He has no known allergies. What should be your initial course of action?

- A. Initiate piperacillin-tazobactam
- B. Initiate meropenem
- C. Initiate cefepime
- D. Initiate meropenem + vancomycin

Response 1: A 47-year old who recently completed cisplatin-based chemotherapy with presents was admitted to the ICU with temperature of 38.5°C and ANC 350. He has no known allergies. What should be your initial course of action?

- A. Initiate piperacillin-tazobactam
- B. Initiate meropenem
- C. Initiate cefepime
- D. Initiate meropenem + vancomycin

Tumor Lysis Syndrome

Tumor Lysis Syndrome (TLS)

- Oncologic emergency characterized by metabolic abnormalities caused by the rapid and abrupt release of intracellular cellular contents into the blood after rapid lysis of malignant cells
- Untreated TLS can lead to profound metabolic changes, which can result in: cardiac arrhythmias, seizures, loss of muscle control, acute renal failure, and death

Metabolic Disturbances

Hyperkalemia	 Potassium > 6 mEq/L or 25% decrease from baseline
Hypocalcemia	 Calcium <7 mEq/dL or ionized calcium <1.12 mg/dL or 25% decrease from baseline
Hyperphosphatemia	 Phosphorus <u>></u> 4.5 mg/dL (<u>></u> 6.5 mg/dL in children) or 25% increase from baseline
Hyperuricemia	 Uric acid <u>></u> 8 mg/dL or 25% increase in baseline

Source: Am Fam Physician. 2018 Jun 1;97(11):741-748.

Classifications

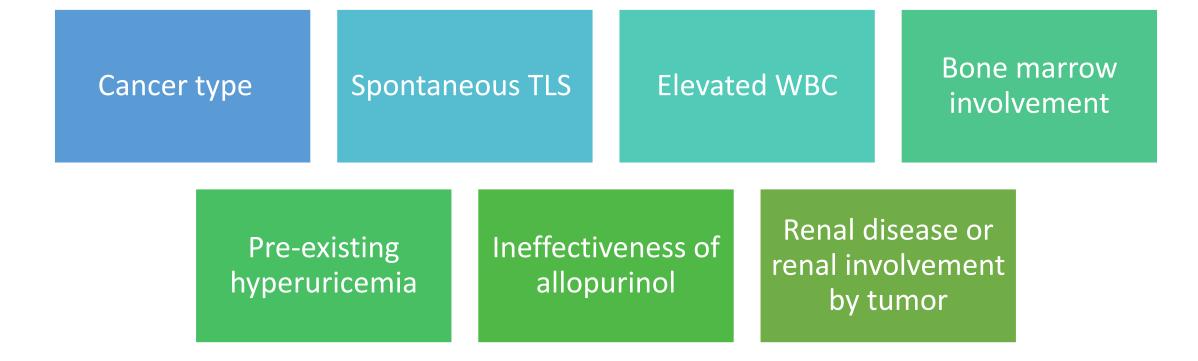
Laboratory TLS:

- 2 or more abnormal serum values of uric acid, potassium, phosphorus, calcium are present
- Or if 25% increase in the levels of serum uric acid, potassium, or phosphorus or a 25% decrease in calcium levels
- Considered either present or absent
- Monitor serum creatinine (SCr) for signs of renal failure

Clinical TLS

- Presence of laboratory TLS PLUS one or more clinical complication(s)
- Clinical complication: renal insufficiency, cardiac arrhythmia/sudden death, or seizures

Source: Journal of Clinical Oncology. 2008; 26: 2767-2778.


Epidemiology

- 42% of patients with high-grade non-Hodgkin's lymphoma (NHL) laboratory TLS
 - 6% of these patients has life-threatening emergencies
- 17% of patients with acute myeloid leukemia (AML) developed clinical or laboratory TLS
 - Found no correlation between laboratory TLS and death rate
 - However, clinical TLS was associated with statistically significant increased death rate
- TLS occurs in more aggressive disease: leukemias (ALL, AML), small cell lung cancer, high tumor burden in solids

Pathophysiology

The release of intracellular contents overwhelms normal homeostatic mechanisms, which leads to electrolyte abnormalities Crystallization of uric acid or calcium phosphate in renal tubules may impair renal function, possibly to the point of acute renal failure or death

Source: National Cancer Comprehensive Network 2014: MS-15-MS-17.

Clinical Presentation

Usually observed after 12-24 hours after chemotherapy

2

Spontaneous TLS may occur in patients with bulky disease even prior to chemo

Ų

Symptoms: Nausea/vomiting, shortness of breath, irregular heartbeat, cloudy urine, lethargy, and/or joint discomfort

Source: National Cancer Comprehensive Network 2014: MS-15-MS-17.

Prevention and Management

- Due to potential severity of complications due to TLS, prevention and prompt treatment is necessary in high risk patients
- Best managed if TLS is anticipated and treatment is started prior to chemo
- Cornerstone of TLS:
 - Hydration
 - Management of hyperuricemia
 - Electrolyte management

Fluids and Hydration

- Aggressive hydration and diuresis for prevention and management
- Improves intravascular volume, renal blood flow, and glomerular filtration, which promotes excretion of uric acid and phosphate
- Diuretics may be used to maintain adequate urine output
 - Contraindication: patients with hypovolemia or obstructive uropathy

Alkalinization

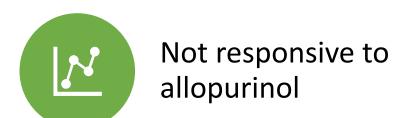
- Sodium bicarbonate to alkalinize urine
- Not recommended with recombinant urate oxidase (rasburicase)
- Due to potential effects of alkalinization (metabolic alkalosis and calcium phosphate precipitation), alkalinization currently not recommended

Allopurinol

- Blocks conversion of xanthine to uric acid
- Decreases uric acid formation and precipitation and reduces the risk of obstructive uropathy
- Alternative: febuxostat
 - If intolerant to allopurinol or not a candidate for rasburicase

Rasburicase (Recombinant Urate Oxidase)

Presence of any high-risk feature


Urgent need to initiate therapy in a high-bulk patient

Situations where adequate hydration may be difficult or impossible

Acute renal failure, renal insufficiency

Sources: *Journal of Clinical Oncology.* 2008; 26: 2767-2778. National Cancer Comprehensive Network 2014: MS-15-MS-17.

Fluids

ΜΟΑ	Dosing	Renal Adjustment	Adverse Effects	Notes
Promotes excretion of uric acid and phosphate by improving intravascular volume, renal blood flow and GFR	NS 125 mL/hr to maintain urine output of 80-100 mL/m ² /h ASCO guidelines recommends hydration at 2-3 L/m ² /d (maintain at approximately 1-2 times maintenance)	None	Hyperchloremia, hypervolemia	Diuretics may be used to maintain urine output (80-100 mL/m ² /h)

Allopurinol

MOA	Dosing	Renal Adjustment	Adverse Effects	Notes
Xanthine analog that competitively inhibits xanthine oxidase, which blocks the conversion of purine metabolites to uric acid resulting in decreased formation of uric acid production (no effect on existing uric acid)	In patients without pre-existing hyperuricemia: PO: 300 mg/m²/d or 10 mg/kg/d in 3 divided doses q8h (max 800 mg/d) IV: 200-400 mg/m²/d in a single daily or 2-3 divided doses (max 600 mg/d) Start: 1-2 days prior to chemotherapy Continue: up to 3-7 days after chemotherapy until normalization of labs	Chemotherapy induced hyperuricemia: dose reduction of 50% CrCl 10-20: 200 mg/d CrCl 3-10: 100 mg/d CrCl<3: 100 mg/d, may need to extend dosing interval	May lead to accumulation of xanthine crystals in renal tubules→ obstructive uropathy	Can take several days to normalize uric acid levels DDIs: reduced clearance of 6- MP/AZA (reduce 6- MP/AZA doses by 65-75%) and high- dose methotrexate Rash (SJS/TEN) [HLA-B*58:01] - Asians at higher risk

Febuxostat

ΜΟΑ	Dosing	Renal Adjustment	Adverse Effects	Notes
Decreases uric acid by selectively inhibiting xanthine oxidase	40 mg daily (max 120 mg daily)	CrCl < 30: 40 mg/day (max)	Skin rash, nausea, LFT abnormalities, arthralgias	Used if intolerant to allopurinol or not a candidate for rasburicase

Sources: *Journal of Clinical Oncology.* 2008; 26: 2767-2778. National Cancer Comprehensive Network 2014: MS-15-MS-17.

Rasburicase

MOA	Dosing	Renal Adjustment	Adverse Effects	Notes
Recombinant urate oxidase that catalyzes the	Weight-based regimens: High risk (uric acid>7.5):	None	Hypersensitivity reaction, Peripheral edema,	Monitor uric acid levels 4 hrs after
oxidation of uric acid to a highly soluble, non-toxic metabolite that is readily	0.2 mg/kg IV over 30 min Intermediate risk (uric acid < 7.5): 0.15 mg/kg IV		headache, anxiety, hypophosphatemia, hyperphosphatemia	administration, then q6-8h
excreted	Low risk (clinical judgement): 0.1 mg/kg IV Duration: usually 2 d, but			Gives inaccurate results after giving rasburicase
	can vary from 1-7 d			(uric acid level will be falsely low) Draw blood
	Single dose regimens:			and put it in
	0.15 mg/kg or 3-7.5mg as			ice so rasburicase is
	single dose, may repeat			not activated
	doses based on serum uric			
	acid level			Contraindication:
				G6PD deficiency

The optimal single-dose regimen of rasburicase for management of tumor lysis syndrome in children and adults: a systematic review and meta-analysis.

Design	Population	Intervention	Outcomes	Results
• Meta-analysis	 Meta-analysis 15 adult reports 4 pediatric reports 906 adult patients (2006 to 2016) 92 pediatric patients (2013-2016) 	 Adults Rasburicase 1.5- 7.5 mg fixed doses and weight-based doses Pediatrics: 1.5 mg dose 0.15 mg/kg dose 	 Response rates Uric acid levels 	 Response rates superior in single dose 6 mg, 7.5 mg and 0.15 mg/kg clinically (RR=0.88, 0.83-0.93) 6 mg and 0.15 mg/kg had greater efficacy overall (UA reduction=7.01 mg/dL, 5.84-8.18)

Conclusion

Single dose 6 mg rasburicase to normalize and sustain uric acid Pediatric patients: 1.5 mg and 0.15 mg/kg single doses

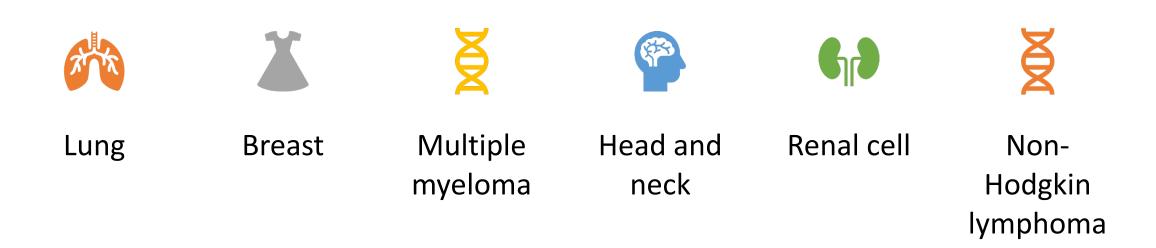
Source: Yu X, et al. The optimal single-dose regimen of rasburicase for management of tumor lysis syndrome in children and adults: a systematic review and meta-analysis. Journal of Clinical Pharmacy and therapeutics 2017; 42: 18-26.

Question 2: A 40-year-old man was recently diagnosed with acute myeloid leukemia. He presents with white blood cell count (WBC 14,000). He is scheduled to start chemotherapy tomorrow. Which of the following is the best prevention strategy for tumor lysis syndrome (TLS)?

- A. Hydration with 5% dextrose 100 mL/hour 24 hours before chemotherapy PLUS allopurinol 300 mg daily
- B. Hydration with 0.9% sodium chloride 250 mL/hour starting at least 24 hours before chemotherapy PLUS allopurinol 300 mg daily
- C. Hydration with 0.9% sodium chloride 250 mL/hour starting at least 24 hours before chemotherapy PLUS rasburicase 6 mg
- D. Hydration with 0.9% sodium chloride 250 mL/hour starting at least 24 hours before chemotherapy plus sodium bicarbonate 500 mg orally every 6 hours

Response 2: A 40-year-old man was recently diagnosed with acute myeloid leukemia. He presents with white blood cell count (WBC 14,000). He is scheduled to start chemotherapy tomorrow. Which of the following is the best prevention strategy for tumor lysis syndrome (TLS)?

- A. Hydration with 5% dextrose 100 mL/hour 24 hours before chemotherapy PLUS allopurinol 300 mg daily
- B. Hydration with 0.9% sodium chloride 250 mL/hour starting at least 24 hours before chemotherapy PLUS allopurinol 300 mg daily
- C. Hydration with 0.9% sodium chloride 250 mL/hour starting at least 24 hours before chemotherapy PLUS rasburicase 6 mg
- D. Hydration with 0.9% sodium chloride 250 mL/hour starting at least 24 hours before chemotherapy plus sodium bicarbonate 500 mg orally every 6 hours

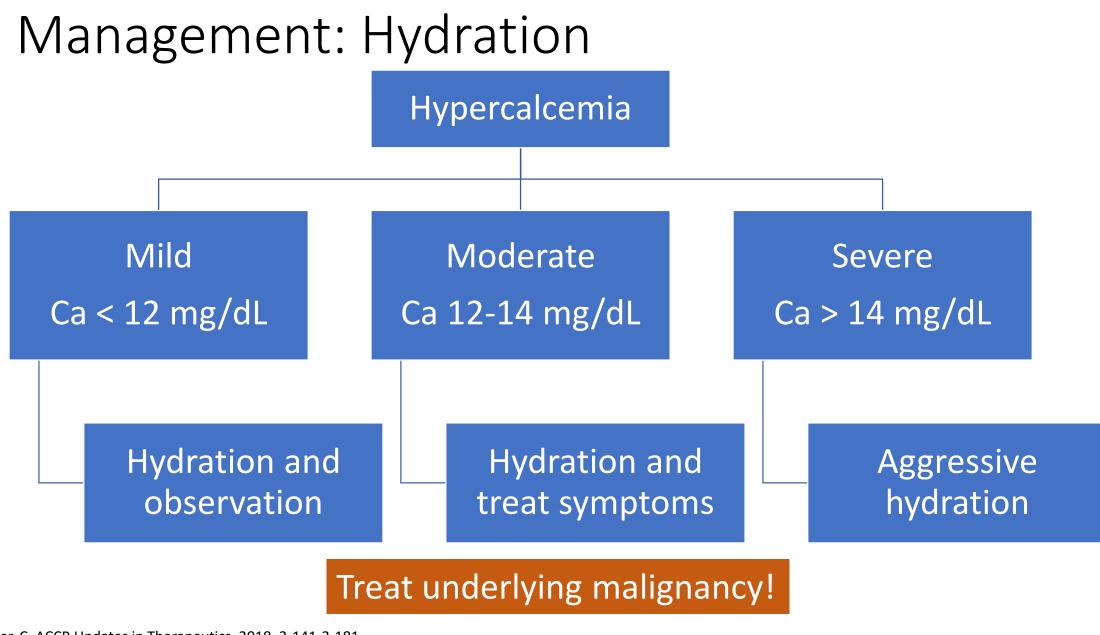


Hypercalcemia of Malignancy

Pathophysiology

Types of Cancer with Higher Risk

Other Risk Factors



Clinical Presentation

- Lethargy
- Confusion
- Anorexia
- Nausea
- Constipation
- Polyuria, polydipsia

Source: Elder, C. ACCP Updates in Therapeutics. 2018. 2-141-2-181.

Source: Elder, C. ACCP Updates in Therapeutics. 2018. 2-141-2-181.

Pharmacologic Management

IV Bisphosphonate	Calcitonin	Denosumab	Steroids	Phosphate	Dialysis
Mechanism: Binds to hydroxyapatite in calcified bone, which inhibits bone resorption Onset of action: 3- 4 days	Mechanism: Inhibits effects of parathyroid hormone (PTH) Onset of action: rapid, but short duration Additional considerations: tachyphylaxis, injection	Mechanism: monoclonal antibody which binds to nuclear factor-kappa ligand (RANKL) and prevent osteoclast formation For acute hypercalcemia of malignancy	Mechanism: Lowers calcium in patients with steroid- responsive tumors (lymphoma and myeloma)	Reserved for hypo- phosphatemia Seldom-used due to risk of precipitation in soft tissue	Patients with hypercalcemia and renal failure

Question 3: A 63-year-old man with metastatic non-small-cell lung cancer is admitted to the ICU with a two day history of symptoms of abdominal pain, nausea/vomiting, and lethargy. *Lab values: Ca: 15 mg/dL, SCr: 2.3*

After aggressive hydration with fluids, which agent would be most appropriate to initiate?

- A. Zoledronic acid
- B. Alendronate
- C. Sodium bicarbonate and insulin
- D. Allopurinol

Response 3: A 63-year-old man with metastatic non-small-cell lung cancer is admitted to the ICU with a two day history of symptoms of abdominal pain, nausea/vomiting, and lethargy. *Lab values: Ca: 15 mg/dL, SCr: 2.3*

After aggressive hydration with fluids, which agent would be most appropriate to initiate?

A. Zoledronic acid

- B. Alendronate
- C. Sodium bicarbonate and insulin
- D. Allopurinol

Key Takeaways

- Oncologic emergencies can be caused by chemotherapy or the cancer itself and requires immediate identification and management
- Management of febrile neutropenia depends upon patient's risk factors and presentation, and typically requires broad-spectrum antimicrobials and monitoring of symptom resolution
- **Tumor lysis syndrome** is associated with metabolic disturbances which is best managed with adequate hydration and management of hyperuricemia
- Hypercalcemia of malignancy is best managed with appropriate hydration depending on severity

Thank you! Sana Mohayya, PharmD, MHS, PGY-1 Pharmacy Resident Sana.Mohayya@rwjbh.org