How Do You Know If Your Sterilized Instruments Remain Sterile?
Disclosure

Harry Shaffer is the first author of the sterility maintenance study covered in this presentation and has been compensated by Halyard Health for his expertise in preparing and presenting today’s webinar.

Harry L. Shaffer, MS
President, Sterilization Consulting Services
Acknowledgements

Bioaerosol and Applied Microbiology Team

Del Harnish, MS – Lead Technical
Mike McDonald, MS – Lead Engineer
Caryn Lawrence, BS – Junior Microbiologist
Devin Mills, BS – Junior Microbiologist
Megan Sandoval, BS – Junior Microbiologist
Samantha Allen – Technician
Harry Shaffer, MS – Consultant and Author
Reid Vernon, MS – Consultant and Author
Learning Objectives

• Differentiate four types of rigid sterilization containers used today, including factors that impact their barrier protection.

• Describe the technical aspects of a leading sterilization wrap available for use.

• Discuss components of the AAMI/ANSI ST77 standards related to sterility maintenance testing of sterilization packaging systems.

• Explain the dynamic bioaerosol test method used in the reported study for sterility maintenance testing.

• Discuss the results of a recent sterility maintenance study and the implications for patient care.
Approximately 300,000 surgical site infections (SSIs) occur annually in U.S. hospitals, resulting in an estimated 9,000 attributable deaths.
Sterile Packaging Systems (SPSs)

- Rigid Containers
- Sterilization Wrap
Rigid Containers

• Generally consists of metal or plastic top and bottom
• All models have at least one filter (reusable or disposable) or a valve system
• Vary in size
• Reusable (can exceed 1,000 uses)
Rigid Sterilization Containers

Vary widely in:
✓ Design
✓ Construction
✓ Mechanics
✓ Compatibility with sterilization
ANSI/AAMI ST77

- Design and performance standard for containment devices
- Voluntary requirements document that provides manufacturer requirements
- This standard should be considered flexible and dynamic
Sterilization Wraps

- Woven fabrics
 - Linen or muslin
 - Not moisture resistant
 - Should withstand 50 - 75 launderings
 - Need to be inspected for holes per use

- Non-woven fabrics
 - Natural or synthetic fibers
 - Bonded together
 - Act as a filter
 - Need to be inspected for tears or punctures per use
4.4.4.1 General Requirements: The sterile barrier system of the containment device shall maintain sterility until the containment device is opened and the sterile contents are aseptically presented.

5.6 Sterilization
For containment devices with valves or filters, the ability of the valve or filter to allow adequate penetration of the sterilant throughout its useful life shall be determined by demonstrating a 12-log reduction and an SAL of 10^{-6}.
Polypropylene Sterilization Wrap

- A hydrophobic material often used to wrap around an instrument tray containing surgical tools
- Wrap acts as a filter, allowing penetration of steam from all angles
- Available in many weights/grades
- Disposable
5.9.1.1 Sterility Maintenance - General
Compliance with the requirements of 4.4.4 can be verified by performing the sterilization testing of 5.6, exposing the sterile barrier system to the expected stresses of storage, transport and handling conditions and then performing either a whole-package microbial challenge test (5.9.1.2) or physical integrity tests (5.9.1.3).

Examples of expected stresses that would be encountered within a healthcare facility include movement of containment devices into and out of a sterilizer and onto and off shelving or carts. Additional handling stresses and vehicle vibration should be considered if transport outside the facility is anticipated.
5.9.1.2 Whole-package microbial challenge test:

The containment device in its sterile barrier system shall be placed inside a chamber and then exposed to a defined aerosol of microorganisms. Sterility testing of the contents of the containment device for the recovery of the challenge organism shall be performed in accordance with USP.
Dynamic Air Movement
5.9.1.2 Whole-package microbial challenge test:

The containment device in its sterile barrier system shall be placed inside a chamber and then exposed to a defined aerosol of microorganisms. Sterility testing of the contents of the containment device for the recovery of the challenge organism shall be performed in accordance with USP.

- Static test
- SPSs are exposed to a defined aerosol of microorganisms
- Contamination of packages’ interior is assessed
Dynamic Bioaerosol Test Method

- Dynamic test that simulates dynamic air movement in hospitals
- Bacterial challenge (100’s of microbes per liter of air) that better simulates airborne bacterial concentrations in hospitals than previous studies
- Microorganism used was relevant to the hospital environment
Dynamic Air Movement

<table>
<thead>
<tr>
<th>Processing Stage</th>
<th>Environmental Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-sterilization Cool Down</td>
<td>Temperature change causes influx of air into SPS</td>
</tr>
<tr>
<td>Storage</td>
<td>Temperature difference from sterilization to storage</td>
</tr>
<tr>
<td></td>
<td>Air exchange during storage</td>
</tr>
<tr>
<td></td>
<td>Human traffic</td>
</tr>
<tr>
<td></td>
<td>Opening and closing of doors</td>
</tr>
<tr>
<td>Transport</td>
<td>Elevator transport</td>
</tr>
<tr>
<td></td>
<td>Movement of SPSs</td>
</tr>
<tr>
<td></td>
<td>Temperature differences between locations</td>
</tr>
</tbody>
</table>
Dynamic Bioaerosol Test Method

- Contains multiple fans, vacuum pumps/compressors to simulate dynamic air movement

- Integrated components allow the user to:
 - Regulate and monitor air movement
 - Determine temperature and humidity
 - Determine particle size
 - Determine viable bacterial concentration
Objectives

• Evaluate the performance of rigid containers and sterilization wrapped instrument trays using the dynamic bioaerosol test method.

• Evaluate if duration of use for rigid containers affects barrier properties.
Sterility Maintenance Study

Rigid Containers
- Multiple designs and ages were evaluated
- New containers were purchased from multiple vendors
- In-use containers were obtained from: nine acute care hospitals, two teaching hospitals, one children’s hospital, one ambulatory surgery center and one government hospital throughout the U.S. and Canada

Sterilization Wrap
- Three grades of single-use polypropylene wrap from a single manufacturer were evaluated
Sterility Maintenance Study – Sterilization Wrap

- Standard envelope method was used to fold the sterilization wrap, unless otherwise directed by manufacturer’s IFUs
Stemility Maintenance Study – Rigid Containers

- Appropriate filters as specified by the manufacturers were secured to the rigid containers
- Sterilization indicators were placed in the containers
- Latches were closed and secured by tamper-evident locks
Sterility Maintenance Study

- Hydrophilic polycarbonate membranes (47-mm, 0.4-μm pore size) were used
- Membranes were placed in aluminum dishes fixed to the bottom of the containers/trays with heat-resistant tape
Sterility Maintenance Study - Sterilization

- SPSs were placed in sterility maintenance covers and transferred to a local hospital for sterilization
- Containers were sterilized using standard pre-vacuum cycle (four-minute exposure at 132 °C) followed by a 30-minute drying time
- Following a 1-1 ½ hour cool down, the SPSs were placed in new covers and transferred back to ARA’s Bioaerosol and Microbiology Laboratory for evaluation
Sterility Maintenance Study – Dynamic Bioaerosol Test

- SPSs were placed in the bioaerosol chamber and simultaneously exposed to a *Micrococcus luteus* (coagulase-negative staphylococci) aerosol and vacuum cycles.
- 100’s of viable bacteria per liter of air were maintained throughout the test.

\[\mu m \approx 1-2 \mu m \]
Results - Decay of Rigid Containers Based on Duration of Use
Sterility Maintenance Study – Enumeration of Microbial Ingress

- SPSs were placed in a containment hood and decontaminated using disinfectant wipes
- SPSs were then placed in a Type II-A2 biological safety cabinet and membranes were aseptically placed on nutrient agar plates
Complexity of Rigid Sterilization Containers

- New and used rigid containers allowed ingress
- Rigid containers contain many parts and, if they malfunction, it may lead to ingress of bacteria
Results – Level of Bacteria Ingress Based on SPS Type

Enumeration of Microbial Ingress

Rigid Containers ($n = 111$)
- 18.0%
- 12.6%
- 22.5%
- 46.8%

Sterilization Wrap ($n = 161$)
- 100.0%

Legend:
- 0 CFU
- 1-9 CFU
- 10-99 CFU
- \geq100 CFU
Rigid Container Failures

- Decay based on duration of use is logical as they would be expected to deteriorate over time
- Gasket material
- Wearing of latches
- Decay in performance of springs
- Mismatching of lids and bottoms
- Denting and deformation of metal parts
Improper Lid Function
Conclusion for Health Care Facilities

• Sterile environment critical to reducing SSIs

• Surgical instruments must be sterile at point of use

• Rigid containers are questionable because of duration of use

• Performance validation for SPSs is needed
Summary

• Infection prevention primary responsibility of perioperative RNs

• Sterile instruments key to reducing patient risk

• Appropriate packaging before sterilization assures sterility

• Sterilization packaging systems should
 • Provide effective barrier from microbial penetration
 • Protect from contamination after sterilization